Относительное сужение при растяжении

Относительное сужение при растяжении thumbnail

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ
ИНСТИТУТ
СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

им. В.А. КУЧЕРЕНКО ГОССТРОЯ СССР

РЕКОМЕНДАЦИИ
ПО МЕТОДИКЕ ОПРЕДЕЛЕНИЯ
ОТНОСИТЕЛЬНОГО РАВНОМЕРНОГО
УДЛИНЕНИЯ СТРОИТЕЛЬНЫХ
СТАЛЕЙ ПРИ ИСПЫТАНИИ
НА РАСТЯЖЕНИЕ

Утверждены директором ЦНИИСК
им
. В.А.
Кучеренко
27
апреля 1979 г.

МОСКВА — 1980

Рекомендации распространяются
на стальной
прокат для строительных металлических
конструкций и устанавливают методы определения относительного равномерного
удлинения как характеристики, нормируемой
техническими условиями, так и необходимой при
проведении научно-исследовательских работ.

Рекомендации предназначены
для инженерно-технических работников заводских
лабораторий (заводов строительных металлоконструкций)
и научно-исследовательских организаций.

Рис. 2.

СОДЕРЖАНИЕ

При работе стали в
конструкциях характеристика относительного равномерного удлинения играет важную роль для
оценки способности металла пластически деформироваться. Эта характеристика
имеет большее значение, чем нормируемое в настоящее время полное относительное
удлинение согласно ГОСТ 1497-73. До настоящего времени для определения равномерного
относительного удлинения в основном использовалась методика, описанная в
стандарте на арматурные стали, где не предусмотрены плоские образцы.

Настоящее руководство
распространяется на стальной толстолистовой, широкополосный универсальный и
фасонный (уголок, швеллер, балка) прокат толщиной от 4 до 40 мм, независимо от
его прочностных свойств, предназначенный для изготовления
строительных металлических конструкций, и
устанавливает методы определения относительного равномерного удлинения при
статических испытаниях
на растяжение при нормальных температурах Относительное сужение при растяжении.

Применение методов
определения относительного равномерного удлинения предусматривается в
стандартах и технических условиях на соответствующие виды проката,
предназначенного для строительных металлических конструкций.

Термины и определения,
принятые в настоящих рекомендациях, согласованы с ГОСТ 1497-73 «Металлы. Методы испытания на растяжение».

Относительное равномерное
удлинение определяется одновременно с относительным удлинением после разрыва.

Настоящие рекомендации
разработаны Отделением прочности и новых форм металлических конструкций и
Отделением испытаний конструкций ЦНИИСК им. Кучеренко Госстроя СССР (составили кандидаты
технических наук Потапов В.Н. и Жулев Ю.К.) на
основании материалов исследований, выполненных
в период 1976-78 гг.

Дирекция ЦНИИСК
им. Кучеренко

1.1. При испытании на
растяжение по определению относительного равномерного удлинения принимаются
следующие обозначения и определения:

l — рабочая длина в мм — часть образца с постоянной площадью поперечного сечения между его
головкой или участком для захвата;

l0 — начальная расчетная длина образца в мм, на которой
определяется удлинение после разрыва;

lпр — начальная расчетная длина участка образца в мм, на которой
определяется равномерное удлинение;

lкр — конечная расчетная длина участка образца в мм, не
включающая место разрыва;

lт — установочная база измерителя деформаций в мм;

d0 — начальный диаметр рабочей части цилиндрического образца до
разрыва в мм;

F0 — начальная площадь поперечного сечения рабочей части образца в мм2;

Fкр — конечная площадь поперечного сечения рабочей части образца после
разрыва, определяемая в расчетной части равномерного
относительного удлинения в мм2.

1.2. Характеристики
механических свойств, получаемых при испытании на растяжение, имеют следующие
обозначения и определения:

δр — относительное равномерное удлинение после разрыва в % — отношение приращения расчетной длины образца (lкр — lнр) на участке, не
включающем место разрыва, к соответствующей первоначальной длине lнр;

ψp — относительное равномерное сужение в % — отношение изменения
площади поперечного сечения образца (F0 — Fкр) после разрыва на участке, не включающем место разрыва, к начальной площади поперечного сечения;

Pвр — максимальная осевая растягивающая нагрузка в кГс, действующая
на образец до образования шейки.

2.1. Для определения
относительного равномерного удлинения при испытании на растяжение применяют
пропорциональные плоские образцы типов I и II с начальной расчетной длиной Относительное сужение при растяжении а также пропорциональные цилиндрические образцы типов I — VII
с l0 = 10d0 по ГОСТ 1497-73.

2.2. Рабочая длина плоского
образца должна составлять

Относительное сужение при растяжении

2.3. При испытании
толстолистового широкополосного и уголкового проката применяют, как правило, плоские образцы. При
испытании швеллерного и двутаврового проката применяют, в основном,
цилиндрические образцы; допускается применение плоских образцов с одной прокатной и другой
обработанной поверхностями.

Плоские образцы должны сохранять
поверхностные слои проката. При толщине проката свыше 25 мм:

— испытания проводят на
плоских образцах толщиной 25 мм с одной прокатной поверхностью;

— допускается применять
плоские образцы
с обеими прокатными поверхностями, принимая при этом ширину образца не менее 50
мм и расчетную длину Относительное сужение при растяжении.

2.4. Измерение начальной и
конечной расчетных длин, размеров поперечного
сечения образца производят с точностью до 0,1 мм.

2.5. На рабочей части образца
рекомендуется наносить разметку — неглубокие керны, риски или иные метки через каждые 5 или
10 мм.

3.1. Для испытаний применяют
разрывные и универсальные машины всех систем, если они соответствуют
требованиям ГОСТ 1497-73, ГОСТ 7855-74
и требованиям
стандартов на стали для строительных металлических конструкций.

3.2. При проведении испытаний
должны соблюдаться следующие основные условия:

а) надежное центрирование
образца в захватах испытательной машины;

б) плавность нагружения;

в) скорость перемещения активного захвата при
испытании до предела текучести долина быть не
более 0,01, за пределом текучести не более 0,2 длины расчетной части образца,
выраженной в мм/мин.

4.1. При текущих испытаниях
определение относительного равномерного
удлинения может производиться по одному из
следующих методов:

Первый метод

Относительное равномерное
удлинение δр определяют вне участка разрыва (предпочтительней на
большей части разрушенного образца) на начальной расчетной длине, равной 50 мм.

Читайте также:  Ванна для растяжения связок

При этом расстояние от места разрыва до
ближайшей точки (риски) начальной расчетной
длины lпр должно быть не менее 3b0*) (с округлением до ближайшей удаленной
разметочной риски от места разрыва образца где
b0 — начальная ширина образца (рис. 1).

______________

*)
В случае цилиндрических образцов вместо b0 следует d0.

Относительное сужение при растяжении

Рис. 1

Относительное равномерное
удлинение δр в процентах вычисляют по формуле

Относительное сужение при растяжении

Второй метод

Относительное равномерное
удлинение δр в % вычисляют по следующей формуле

Относительное сужение при растяжении

где ψр — относительное равномерное сужение в %, вычисленное по формуле

Относительное сужение при растяжении

Измерение площади Fкр производится на расстоянии от места
разрыва не менее 4b0.

Третий метод*)

______________

*) Этот метод
допускает использование образцов с пятикратной расчетной длиной.

Относительное равномерное
удлинение δр определяют графически по диаграмме растяжения (рис. 2), записываемой соответствующим измерителем деформаций, установленным непосредственно на
образце.

Масштаб по оси деформаций
должен быть не менее 50:1.

Примечание. Определение δр производится на
участке диаграммы растяжения, заканчивающемся точкой В, которая соответствует
началу достижения максимальной нагрузки Рвр.

Относительное сужение при растяжении

Рис. 2

4.2. Относительное
равномерное удлинение вычисляют с округлением до 0,5 %. При этом доли до 0,25 %
отбрасывают, а доли в 0,25 % и более принимают за 0,5 % (см. приложение).

4.3. Испытание считается
недействительным:

— при разрыве
образца по кернам (рискам), если при этом какая-либо
характеристика механических свойств по своей величине не отвечает установленным требованиям;

— при разрыве
образца в захватах испытательной машины или за пределами расчетной длины;

— при обнаружении ошибок в
проведении испытаний или записи результатов
испытаний.

В указанных случаях испытание
на растяжение должно быть повторено на отобранных от той же партии или плавки
новых образцах.

По первому методу (рис. 1)

Начальная расчетная длина lнр = 50
мм;

Конечная расчетная длина  lкр = 58,4 мм,

Относительное сужение при растяжении

По второму методу

Начальная площадь поперечного сечения
(10×30 мм) образца F0 = 300 мм2.

Конечная площадь поперечного
сечения образца (замеренная на расстоянии 4b0 от места разрыва) Fкр = 258 мм2

Относительное сужение при растяжении

Относительное сужение при растяжении

Источник

К механическим свойствам металлов относят их способность сопротивляться деформациям (изменению формы или размеров) и разрушению под действием внешних нагрузок. Такими свойствами являются прочность, пластичность, твердость, вязкость (ударная), усталость, ползучесть.

Деформации, которые исчезают после снятия нагрузки, при этом материал принимает первоначальную форму, называют упругими. Деформации, которые остаются после снятия нагрузки, называют остаточными.

Для определения механических свойств материалов специальные образцы или готовые изделия испытывают в соответствии с требованиями ГОСТов. Испытания образцов могут быть статическими, когда на образец действует постоянная или медленно возрастающая нагрузка, динамическими, когда на образец действует мгновенно возрастающая (ударная) нагрузка, и повторно-переменными (усталостными), при которых нагрузка на образец многократно изменяется по величине и направлению.

В зависимости от характера действия приложенных к образцу или изделию сил (нагрузок) различают деформации сжатия, растяжения, изгиба, сдвига (среза), кручения.

Виды деформаций металла в зависимости от направления действующей нагрузки

Виды деформаций металла в зависимости от направления действующей нагрузки:

а — сжатия, б — растяжения, в — изгиба, г — сдвига (среза), д — кручения

Механические свойства оцениваются численным значением напряжения.

Напряжение — мера внутренних сил, возникающих в образце под влиянием внешних воздействий (сил, нагрузок).

Напряжение служит для оценки нагрузки, не зависящей от размеров деформируемого тела. Напряжения, действующие вдоль оси образца, называют нормальными и обозначают буквой σ (сигма).

Нормальные напряжения определяются отношением сил, действующих вдоль оси детали или образца, к площади их поперечного сечения:

σ = P/F,

где σ — нормальное напряжение, Па (1 Па = H/м²; 1 кгс/см² = 105 Па);

P — сила, действующая вдоль оси образца, H;

F — площадь поперечного сечения образца, м².

Нормальные напряжения в зависимости от направления действующих нагрузок бывают сжимающими и растягивающими.

Напряжения, действующие перпендикулярно оси образца, называют касательными и обозначают буквой τ.

Под действием касательных напряжений происходит деформация среза.

Напряжения определяют при механических испытаниях образцов на специальных машинах. Эти напряжения используют при расчетах деталей машин на прочность.

Усилия, нагрузки, действующие на детали, создают в них напряжения, которые в свою очередь вызывают деформацией деталей.

Например, канат автомобильного крана при поднятии груза под действием растягивающей нагрузки испытывает напряжение растяжения, поэтому и подвергается деформации растяжения. Под действием сжимающих напряжений деформацию сжатия испытывают станины и фундаменты станков, опорные колонны, колеса и катки машин. В стреле автомобильного или башенного крана, поднимающего груз, возникают напряжения изгиба, которые вызывают деформацию изгиба стрелы. Деформации изгиба испытывают балки, на которые положен груз, рельсы под тяжестью
поезда, башенного или козлового крана. На срез работают заклепочные соединения, стопорные болты.

Напряжения кручения вызывают деформацию кручения, например, когда у стяжных болтов
затягивают гайки.

Прочность — способность металлов или сплавов сопротивляться разрушению при действии внешних сил, вызывающих внутренние напряжения и деформации.
В зависимости от характера действия внешних сил различают прочность на растяжение, сжатие, изгиб, кручение, ползучесть и усталость.

Определение характеристик прочности при растяжении — наиболее важный и распространенный вид механических испытаний металлов. Испытывают образцы определенной формы и размеров на специальных разрывных машинах (ГОСТ 1497—73). Стандартный образец (рис. Стандартный образец для испытания на растяжение) закрепляют головками в машине и медленно нагружают с постоянной скоростью.

Образец для испытания на растяжение

В результате возрастающей нагрузки происходит растяжение образца вплоть до разрушения.
При испытании производится автоматическая запись диаграммы растяжения, представляющей собой график изменения абсолютной длины образца в зависимости от приложенной нагрузки.

Читайте также:  Построение эпюр с решение растяжение сжатие

Диаграмма растяжения малоуглеродистой стали

Определенные точки на диаграмме растяжения p, c, s, b отражают наиболее важные характеристики прочности: предел пропорциональности, условные пределы упругости, текучести и прочности.

Предел пропорциональности σ пц (точка p на диаграмме растяжения) — это наибольшее напряжение, возникающее под действием нагрузки P пц, до которого деформации в металле растут прямо пропорционально нагрузке. При этом в образце происходят только упругие деформации, т.е. образец после снятия нагрузки принимает свои первоначальные размеры. При дальнейшем увеличении нагрузки деформации образца будут остаточными.

Условный предел упругости σ 0,05 (точка c на диаграмме растяжения) — это напряжение, при котором образец получает остаточное удлинение, равное 0,05% первоначальной длины образца.

Практически предел упругости очень близок пределу пропорциональности.

Условный предел текучести (точка s на диаграмме растяжения) — это напряжение, при котором остаточное
удлинение достигает заданного значения, обычно 0,2%, но иногда 0,1 или 0,3% и более при нагрузках Рt.

В соответствии с этим условный предел текучести обозначается σ 0,2, σ о,1, σ 0,3 и т. д.

Следовательно, условный предел текучести отличается от условного предела упругости только заданным значением остаточного удлинения.
Условный предел текучести соответствует напряжению, при котором происходит наиболее полный переход к пластической деформации металла.

Условный предел прочности σ в (точка b на диаграмме растяжения) — это условное наибольшее напряжение, при котором происходит наибольшая равномерная по всей длине деформация образца.

После точки s на участке sb диаграммы растяжения при дальнейшем увеличении нагрузки в образце развивается интенсивная пластическая деформация. До точки b образец удлиняется равномерно по всей длине. В точке b начинается резкое уменьшение поперечного сечения образца на коротком участке с образованием так называемой шейки.

Предел прочности определяют по формуле:

σ в = Pв/Fo,

где σ в — предел прочности материала, Па;

Pв — нагрузка в точке b, H;

Fo — площадь поперечного сечения образца до испытания, м².

Характеристиками прочности пользуются при изготовлении деталей машин. Практическое значение пределов пропорциональности, упругости и текучести сводится к тому, чтобы определить численное значение напряжений, под действием которых могут работать детали машинах, не подвергаясь остаточной деформации (предел пропорциональности) или подвергаясь деформации на небольшую допустимую величину σ 0,о5, σ о,2 и т. д.

Пластичность — способность металлов сохранять изменение формы, вызванное действием деформирующих сил после того, как силы сняты.

Пластические свойства испытываемого образца металла определяют при испытаниях на растяжение. Под действием нагрузки образцы удлиняются, при этом поперечное сечение их соответственно уменьшается. Чем больше удлиняется образец при испытании, тем более пластичен материал. Характеристиками пластичности материалов служат относительное удлинение и относительное сужение образцов.

Относительным удлинением называется отношение приращения длины образца после разрыва к его перво-
начальной длине.

Относительное удлинение δ (дельта) выражают в процентах и вычисляют по формуле:

δ = [ (l1 — l0)/l0 ] • 100%

где l1 — длина образца после разрыва, м;

l0 — длина образца до начала испытания, м.

Относительным сужением называется отношение уменьшения площади поперечного сечения образца после разрыва к площади поперечного сечения образца до начала испытания.

Относительное сужение ψ (пси) выражают в процентах и вычисляют по формуле

ψ = [ (F0 — F1)/F0 ] • 100%

где F0 — площадь поперечного сечения образца до начала испытания, м²;

F1 — площадь поперечного сечения образца после разрыва, м².

Твердость — сопротивление поверхностных слоев материала местным деформациям.

Твердость обычно оценивается сопротивлением вдавливанию в поверхность металла индикатора из более твердого материала.

Измерение твердости металлов и сплавов как метод щенки их механических свойств широко используется в технике.
По твердости судят о других свойствах металла и сплава. Например, для многих сплавов, чем выше твердость, тем больше прочность на растяжение, выше износостойкость; как правило, сплавы с меньшей твердостью легче обрабатываются резанием.

Твердость определяют непосредственно на деталях без их разрушения. Поэтому испытание на твердость является незаменимым производственным методом оценки механических свойств материалов.

На практике в зависимости от используемого прибора твердость определяют двумя способами. Если твердость исследуемого материала меньше, чем твердость закаленной стали, то используют твердомер шариковый — ТШ, если твердость исследуемого материала больше, чем твердость закаленной стали, то пользуются твердомером конусным — ТК.

При определении твердости по Бринеллю на приборах ТШ (ГОСТ 9012—59) стальной закаленный шарик диаметром D (2,5; 5 или 10 мм) вдавливают в испытуемый металл под действием нагрузки P в течение определенного времени.

Схема определения твердости по Бринеллю

После удаления нагрузки на поверхности испытуемого металла остается отпечаток.
Измерив под микроскопом диаметр отпечатка а, по таблицам стандарта определяют твердость металла.
Отношение приложенной к шарику нагрузки (кгс) к площади поверхности отпечатка шарика (мм²) называется числом твердости по Бринеллю и обозначается HB.

Если на шарик диаметром 0-10 мм действует нагрузка Р=3000 кгс в течение 10 с, то определяемое по таблицам число твердости по Бринеллю записывают так: HВ400, HВ250, HВ500 и т. д.

При других условиях испытания к обозначению НВ добавляют цифры, характеризующие диаметр шарика (мм), нагрузку (кгс) и продолжительность выдержки (с).

Например, HВ5/750/30—350 обозначает, что число твердости по Бринеллю равно 350 при испытании вдавливанием шарика диаметром D = 5 мм под нагрузкой Р = 750 кгс в течение t = 30 с.

При определении твердости по Роквеллу на приборах ТК (ГОСТ 9013—59) алмазный конус с углом при вершине 120° вдавливают в испытуемый металл сначала под действием предварительной нагрузки Р0, равной
10 кгс, которая не снимается до конца испытания.

Схема определения твердости по Роквеллу

Под нагрузкой Р0 алмазный конус вдавливается на глубину h0. Затем к предварительной нагрузке добавляется основная нагрузка Р1, равная 140 или 50 кгс — для очень твердых и хрупких материалов. Алмазный конус вдавливается на глубину h1. Через 1 — 3 с, после того как стрелка прибора замедлит свое движение, основную нагрузку снимают. Стрелка прибора показывает на шкале твердость металла в условных единицах.

Читайте также:  Разрушение при растяжении это

За условную единицу твердости по Роквеллу принимается глубина вдавливания алмазного конуса на величину 0,002 мм ≈ h0. Все шкалы прибора отградуированы в безразмерных условных единицах твердости.

Твердость, определяемая на приборах ТК. методом вдавливания алмазного конуса, называется твердостью по Роквеллу и обозначается НR. Отсчет твердости ведут по двум шкалам в зависимости от применяемой общей нагрузки Р.

Если Р = Р0 + Р1= 10 + 140= 150 кгс, то отсчет твердости ведут по шкале С и твердость обозначают НРС, если Р = Ро+Р1 = 10+50 = 60 кгс, то отсчет твердости ведут также по шкале С, но твердость обозначают НРА.

Если необходимо измерить твердость по Роквеллу мягких материалов, то алмазный конус заменяют шариком диаметром 1,6 мм. Основная нагрузка Р1 = 90 кгс, значит, общая нагрузка Р = Р0Р1 = 10 + 90 = 100 кгс.

Отсчет твердости ведут по специальной шкале B, а твердость обозначают НRB.

Твердость по Роквеллу НR записывают таким образом:
HRC65, HRB30, HRA80 и т. д., где цифры обозначают твердость, а буквы А, С, В — соответствующую шкалу.

Ударная вязкость — способность металлов сопротивляться действию ударных нагрузок. При ударных нагрузках напряжения, возникающие в металле, действуют мгновенно, поэтому их трудно определить. Ударную вязкость определяют работой, затраченной на излом образца.

Для определения ударной вязкости при нормальной температуре (ГОСТ 9454—78) предусмотрено 20 типоразмеров образцов квадратного и прямоугольного сечения. Чаще применяют образцы квадратного сечения 10 х 10 мм длиной 55 мм с концентратором (надрезанные с одной стороны посередине длины на глубину 2 мм).

Образец 1 стандартной формы

Схема испытания образца на ударную вязкость на маятниковом копре

укладывают горизонтально в специальный шаблон маятникового копра, обеспечиваюший установку надреза образца строго в середине пролета между опорами 3. Маятник 2 копра закрепляется в исходном верхнем положении на высоте H.

Затем маятник сбрасывается, и он, свободно падая под действием собственной тяжести, наносит удар по образцу 1 со стороны, противоположной надрезу. В результате удара образец изгибается и ломается, а маятник после разрушения образца продолжает двигаться дальше и поднимается на высоту h.

Работа, затраченная на разрушение образца, определяется разностью потенциальных энергий маятника в начальный (после подъема на угол α) и конечный моменты испытания (после взлета на угол β) и выражается формулой:

k = P (H — h)

k — работа, затраченная на разрушение образца, Дж (кгс · м)

Р — вес маятника, кгс

H и h — высоты подъема и взлета маятника, м

Основную характеристику при испытании на ударную вязкость — определяют по формуле:

kcu = k/So

kc — ударная вязкость, Дж/м² (1 Дж/м² ≈ 0,1 кгс · м/см²)

u — форма концентратора

So — площадь поперечного сечения образца в месте надреза до испытания, м²

Многие детали машин и конструкции во время работы подвергаются ударным нагрузкам, действие которых на детали происходит мгновенно. В результате изменяются условия, при которых работают такие детали.

Ударные нагрузки испытывают инструменты типа штампов. некоторые зубчатые передачи и т.д.

Усталость — разрушение металлов под действием многократных повторно-переменных (циклических) нагрузок, при напряжениях меньших предела прочности на растяжение.

В условиях действия повторно-переменных нагрузок в работающих деталях образуются и развиваются трещины, которые приводят к полному разрушению деталей. Подобное разрушение опасно тем, что может происходить под действием напряжений, намного меньших пределов прочности и текучести.

Свойство противостоять усталости называется выносливостью. Сопротивление усталости характеризуется пределом выносливости, т. е. наибольшим напряжением, которое может выдержать металл без разрушения заданное число раз.

Под действием повторно-переменных нагрузок работают коленчатые валы двигателей, многие детали машин — валы, шатуны, пальцы, шестерни и т. д.

Цель испытаний на усталость (ГОСТ 2860-65) — количественная оценка способности материала (образца) работать при повторно-переменных нагрузках без разрушения.

Цикл напряжений — совокупность переменных значений напряжении за один перепад их изменения. Заданное число циклов нагружения при испытании называют базой испытания. Обычно база испытания составляет 108 циклов нагружения. Если материал выдержал базовое число циклов без разрушения, то он хорошо противостоит усталости и деталь из этого материала будет работать надежно.

Ползучесть — способность металлов и сплавов медленно и непрерывно пластически деформироваться под действием постоянной, длительно действующей нагрузки.

Изделия из металлов и сплавов, работающие при повышенных или высоких температурах, обладают меньшей прочностью. При эксплуатации любой материал под действием постоянной нагрузки (напряжения) может в определенных условиях прогрессивно деформироваться с течением времени.

Испытания на ползучесть при растяжении (ГОСТ 3248-60) заключаются в том, что испытуемый образец в течение длительного времени подвергается действию постоянного растягивающего усилия при постоянной высокой температуре.

В результате испытания определяют предел ползучести металла, т. е. наибольшее растягивающее напряжение, при котором скорость ползучести или относительное удлинение за определенный промежуток времени достигает заданной величины.

Если задаются скоростью ползучести, то предел ползучести обозначают σνп,

где νп — заданная скорость ползучести, %/ч; t — температура испытания, °С.

Например, предел ползучести при температуре 1000 —  это предел ползучести при температуре 1000°С и скорости ползучести νп = 1 · 10-4 %/ч.

Если задаются относительным удлинением, то в обозначении предела ползучести используют три индекса:

температуру испытания t, °С

относительное удлинение σ, %

продолжительность испытания τ, ч

Например, предел ползучести при температуре 800 — предел ползучести при температуре 800° С, когда относительное удлинение σ = 1% достигается за 1000 ч.

Источник