Однородное растяжение и сжатие

Однородное растяжение и сжатие thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Однородное растяжение и сжатие

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

Читайте также:  Прочность при растяжении бронзы

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Макеты страниц

При однородной деформации напряженное состояние среды одинаково во всех точках тела: тензор напряжений не зависит от координат. Однородная деформация — это статическая деформация, так как на каждую частицу со стороны соседних действуют одинаковые противоположно направленные силы, и поэтому равнодействующая напряжений, действующих на частицу, равна шулю.

Если деформация неоднородна, но меняется от точки к точке непрерывно, то для вычисления напряжений в малой окрестности данной точки деформацию можно считать однородной и учитывать неоднородность только при вычислении силы, действующей на элементарный объем. Важнейшие типы однородных деформаций — всестороннее сжатие, чистый сдвиг, растяжение вдоль одной оси.

Всесторонним растяжением (или всесторонним сжатием — в зависимости от знака деформации) называют деформацию, при которой удлинение одинаково по всем трем осям, а сдвиговые деформации равны нулю:

Подставляя в уравнение (136.1), найдем

Отличны от нуля только нормальные напряжения. Величину

называют модулем всестороннего сжатия или объемным модулем упругости. Формулу (138.1) можно записать также в виде

В этом виде формула справедлива и для любой неоднородной деформации, что легко видеть, свертывая (136.1) по индексам и Таким образом, среднее значение трех нормальных напряжений зависит только от дивергенции смещения, или, что то же, от сжатия среды.

Деформацией чистого сдвига в плоскости называют деформацию, при которой отличны от нуля только компоненты тензора деформации. Из (136.1) найдем, что в этом случае отличными от нуля будут только напряжения

Таким образом, второй коэффициент Ламе имеет физический смысл модуля сдвига. При обращении в нуль твердое тело обращается в жидкость с сжимаемостью

Деформацией растяжения вдоль оси называют такую деформацию, при которой отлична от нуля только компонента тензора деформаций (такого типа деформация, но не однородная, а меняющаяся вдоль оси возникает в плоской волне, бегущей, вдоль оси Из (136.1) найдем в этом случае

Нормальное напряжение достигает наибольшего значения вдоль направления растяжения, а наименьшего — в перпендикулярном направлении. Для жидкости, испытывающей ту же деформацию, оба напряжения были бы равны друг другу.

Величину

называют упругим модулем плоской волны. Как и всякая деформация, не сводящаяся к всестороннему сжатию, растяжение вдоль одной оси связано со сдвигом. Однако при данном выборе координатных осей (главные оси) сдвиговые компонейты тензоров деформации и напряжения равны нулю.

Часто приходится иметь дело с ограниченными твердыми телами, например цилиндрическими стержнями и пластинами. Растяжение таких ограниченных участков сред происходит иначе, чем растяжение сплошной среды. Рассмотрим однородное растяжение вдоль оси стержня со свободной боковой поверхностью. Направим ось по оси стержня. Единственной отличной от нуля компонентой напряжения будет так как на боковых стенках стержня напряжения должны обращаться в нуль, а в силу однородности деформации компоненты тензора напряжений постоянны по всему телу.

В этом случае из уравнения (136.1) найдем

откуда получим

и, подставляя в первое уравнение,

Величину

называют коэффициентом Пуассона. Согласно (138.4) он дает отношение поперечного изменения размеров («пуассоново сжатие») к продольному при сжатии или растяжении стержня. Величину

называют модулем Юнга для стержня.

Пользуясь величинами получим из (136.3) следующие выражения деформации растяжения по любым трем взаимно перпендикулярным направлениям через нормальные напряжения по. этим направлениям:

Читайте также:  Упражнения для растяжения подъязычной уздечки

Так как в закон Гука входят только две независимые характеристики вещества, то между тремя различными модулями упругости К, и Е должна быть линейная зависимость, а коэффициент Пуассона можно выразить через любые два различных модуля упругости. Соответственные формулы можно записать так:

Из повседневного опыта ясно, что объемный модуль упругости и модуль сдвига — не отрицательные числа: тела «сопротивляются» деформации, а не «способствуют» ей. Поэтому из (138.10) следует, что для любого тела должно находиться в пределах от —1 (при

до Отрицательные значения коэффициента Пуассона для реальных сред не встречаются, так что фактически всегда выполняются неравенства

Отсюда, в частности, следует, что и коэффициент Ламе также всегда положителен; предельный случай соответствует , т. е. переходу от твердого тела к жидкости. Вещества с модулем сдвига, малым по сравнению с модулем всестороннего сжатия, называют водоподобными. Примеры водоподобных тел — резины, мягкие пластмассы, мягкие живые ткани. Для водоподобных тел справедливы приближенные соотношения

Коэффициент Пуассона, близкий к нулю, имеет пробка: при растяжении и сжатии куска пробки поперечные размеры куска практически не меняются. Это позволяет использовать для закупоривания бутылок цилиндрические пробки. Пробки из резины, для которой коэффициент Пуассона близок к 1/2, приходится делать коническими: цилиндрическая резиновая пробка может оказаться самотормозящимся устройством, и ее будет невозможно продвинуть в горлышко бутылки.

Можно выразить все модули упругости через какой-нибудь один из модулей и через коэффициент Пуассона. Так, из полученных выше формул найдем

Отсюда видно, в частности, что все модули упругости всегда положительны и имеют место неравенства:

Случай растяжения бесконечной пластины — промежуточный между растяжением стержня и продольным растяжением в безграничной среде. Пусть пластина лежит в плоскости и растягивается вдоль оси Тогда растяжение по оси отсутствует: кроме того, нормальное напряжение вдоль оси равно нулю: Пользуясь (136.1), находим

Из второгв из этих уравнений находим уравнение, аналогичное

т. е. коэффициент поперечного сжатия пластины по толщине (его можно назвать коэффициентом Пуассона для пластины равен

Подставляя найденное значение в формулу для найдем формулу, аналогичную (138.5):

Величину

называют модулем Юнга для пластины. Очевидно,

Модуль Юнга для пластины всегда превышает модуль Юнга для стержня. Это вызвано тем, что в пластине частицы не могут смещаться по оси как в стержне. Легко видеть, что модуль плоской волны больше обоих модулей Юнга. Полезно заметить формулы

Величина для всех веществ лежит в пределах принимая значение, близкое к единице, для водоподобных сред. Для таких сред приближенно

Источник

Возьмём однородный стержень и приложим к его основаниям растягивающие (или сжимающие) усилия (рис.7.1). Пусть — длина недеформированного стрежня, а S — его сечение. После приложения силы F его длина получает приращение D и делается равной . Отношение

, (7.1)

называется относительным удлинением стержня.

В случае растягивающих сил оно положительно, в случае сжимающих сил – отрицательно.

Деформация стержня связана с возникновением упругих сил, с которыми одна часть стержня действует на другую, с которой она граничит. Такие силы действуют в любом поперечном сечении. Внешняя сила, приложенная к каждой из этих двух частей, уравновешивается упругой силой Fупр, действующей на рассматриваемую часть со стороны другой. Силу, перпендикулярную поперечному сечению стержня и отнесенную к единице его площади, называют нормальным упругим напряжением

. (7.2)

В системе СИ упругое напряжение измеряется в Н/м2 .

Опыт показывает, что при малых деформациях, возникающие в теле нормальные упругие напряжения пропорциональны относительной деформации, т.е.

, (7.3)

где Е — постоянная, называемая модулем Юнга и зависящая только от материала стержня и его физического состояния..

Формула (7.3) выражает закон Гука для деформации растяжения и сжатия. Из нее следует, что модуль Юнга равен тому нормальному напряжению, при котором относительное удлинение равно единице. Длина стержня в этом случае увеличилась бы в 2 раза, если бы при такой деформации выполнялся закон Гука. Однако, при таких больших деформациях закон Гука не выполняется и либо образец разрушается, либо нарушается пропорциональность между деформацией и силой.

Под действием растягивающей или сжимающей силы изменяются не только продольные, но и поперечные размеры стержня. Характеристикой этого изменения является относительное поперечное сжатие (растяжение)

, (7.4)

где d — поперечный размер образца.

При растяжении e i < 0, при сжатии e i>0. Отношение

, (7.5)

называется коэффициентом Пуассона.

Для большинства изотропных материалов, к которым относятся, например, металлы, имеющие поликристаллическую структуру, он близок к 0,25. Модуль Юнга Е и коэффициент Пуассона m полностью характеризуют упругие свойства изотропного материала. Все прочие упругие постоянные могут быть выражены через Е и m.

Деформированное тело обладает запасом потенциальной энергии.Эта энергия называетсяупругой. Она равна работе, затраченной на деформацию тела.

Приложим к стержню растягивающую силу ƒ(x) и будем непрерывно увеличивать ее от начального значения ƒ=0 до конечного значения ƒ=F. При этом удлинение будет меняться от x = 0 до конечного значения x = Dl. По закону Гука

. (7.6)

Вся работа, совершаемая при деформации, запасается в виде упругой энергии, поэтому

. (7.7)

Эта энергия распределена по всему объему деформированного тела, что дает основание ввести плотность энергии упругой деформации, т.е. энергию, приходящуюся на единицу объема стержня,

Читайте также:  Мазь от растяжений при лактации

. (7.8)

Сдвиг

Сдвигом называют такую деформацию твердого тела, при которой все его плоские слои, параллельные некоторой плоскости, называемой плоскостью сдвига, смещаются параллельно друг другу (рис.7.2). Сдвиг происходит под действием касательной силы F, приложенной к грани ВС, параллельной плоскости сдвига. Грань АD, параллельная ВС, закреплена неподвижно. При малом сдвиге:

, (7.9)

где D х = — абсолютный сдвиг, а g — угол сдвига, называемый также относительным сдвигом.

В любом сечении образца, параллельном плоскости сдвига, возникают уже не нормальные, а касательные упругие напряжения, определяемые по формуле

. (7.10)

По закону Гука касательные напряжения пропорциональны относительному сдвигу,т.е.

, (7.11)

где G — модуль сдвига.

Модуль сдвига численно равен тому касательному напряжению, которое возникло бы в образце при относительном сдвиге, равном единице, если бы в этом случае выполнялся закон Гука.

Между модулем сдвига, модулем Юнга и коэффициентом Пуассона существует следующее соотношение

. (7.12)

Объемная плотность энергии упругой деформации при сдвиге, как и при растяжении (7.8), прямо пропорциональна квадрату напряжения и обратно пропорциональна модулю упругости:

. (7.13)

Кручение

Возьмем однородный стержень, закрепим его верхний конец, а к нижнему концу приложим закручивающие силы, создающие вращающий момент. В результате этого каждый радиус нижнего основания повернется вокруг продольной оси на некоторый угол. Такая деформация называется кручением.

Деформация кручения является неоднородной. Это значит, что деформация внутри образца меняется от точки к точке. Чем дальше от оси вращения, тем больше деформация.

Закон Гука для деформации кручения записывается в виде

, (7.14)

где ƒ – постоянная для данного образца величина, называемая модулем кручения, — угол кручения, — крутящий момент.

Модуль кручения показывает, какой момент сил нужно приложить, чтобы закрутить стержень на угол в 1 рад. В отличие от модулей Юнга и сдвига он зависит не только от материала, но и от геометрических размеров образца.

Деформацию кручения можно свести к деформации сдвига. Выведем выражение для модуля кручения.

Стержень (рис.7.3) можно представить состоящим из множества цилиндрических оболочек (трубок) радиусом r, длиной L и толщиной dr. Площадь основания трубки

dS = 2p rdr , (7.15)

а момент упругих сил, действующих на это основание:

dM = 2 p r dr τ r , (7.16)

где τ — тангенциальное напряжение в этом основании.

С учетом того, что каждый элемент цилиндрической трубки сдвигается на угол:

, (7.17)

то по закону Гука для деформации сдвига получим

. (7.18)

Таким образом, момент сил, действующих на цилиндрическую трубку, равен

. (7.19)

Полный момент сил, действующих на стержень радиуса R, найдется интегрированием:

. (7.20)

Сопоставляя (7.20) с законом Гука для деформации кручения (7.14), получим выражение для модуля кручения:

. (7.21)

Экспериментально модуль кручения можно измерить. С этой целью подвесим на проволоке массивное симметричное телои возбудим крутильные колебания. Эти колебания будут гармоническими с периодом

, (7.22)

где I – момент инерции тела, f – модуль кручения проволоки. Если момент инерции тела известен, то, определив период колебаний, можно вычислить по формуле (9.22) модуль кручения проволоки.

Примеры решения задач

1. Нижнее основание стального цилиндра диаметром d=20 см и высотой h=20 см закреплено неподвижно. На верхнее основание действует горизонтальная сила F=20 кН. Найти: 1) тангенциальное напряжение в материале цилиндра, 2) смещение верхнего основания цилиндра, 3) потенциальную энергию и объемную плотность деформированного образца.

Решение

1) Тангенциальное напряжение материала деформированного образца выражается формулой

.

В данном случае , поэтому получим

.

Сделав вычисления, найдем

2) Смещение верхнего основания цилиндра будет равно

,

где — угол сдвига.

В соответствии с законом Гука

,

где = 8,1.1010 Па — модуль сдвига стали.

Произведя подстановку, получим

.

Выполнив вычисления, найдем

1,6 мкм.

3. Потенциальная энергия и объемная плотность энергии деформированного образца определятся по формулам

и .

Сделав вычисления, получим, U=159 мДж, w= 2,5 Дж/м3.

2. Определить относительное удлинение алюминиевого стержня, если при его растяжении затрачена работа А=6,9 Дж. Длина стержня l=1 м, площадь поперечного сечения S=1 мм2, модуль Юнга для алюминия Е=69 ГПа.

Решение

Работа, затраченная при растяжении стержня, переходит в его упругую потенциальную энергию

,

где — нормальное напряжение деформированного образца, V =Sl – его объем.

В соответствии с законом Гука

.

После подстановки и преобразований, найдем

.

Вычисления дают

Основные положения

1. Упругое напряжение – физическая величина, равная упругой силе, приходящейся на единицу площади:

— нормальное напряжение, сила направлена по нормали к площадке

;

— тангенциальное напряжение, сила направлена по касательной к площадке

.

2. Закон Гука – напряжение упруго деформированного тела прямо пропорционально его относительной деформации:

— деформация растяжения (сжатия)

;

— деформация сдвига

.

3. Коэффициент Пуассона – отношение поперечного сужения к продольному удлинению:

4. Объемная плотность энергии упруго деформированного тела:

— деформация растяжения (сжатия)

;

— деформация сдвига

.

Контрольные вопросы

1. Что такое упругие напряжения? Как определяются нормальные и тангенциальные напряжения?

2. Как формулируется закон Гука для различных видов деформации?

3. Каков физический смысл модуля Юнга и модуля сдвига?

4. Как определяется коэффициент Пуассона?

5. От чего зависит объемная плотность энергии упруго деформированного тела?

Механика жидкостей и газов



Источник