Напряжение в сечении бруса при растяжении

Напряжение в сечении бруса при растяжении thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Напряжение в сечении бруса при растяжении

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

Читайте также:  Как снять боль при растяжении спины

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

При растяжении (сжатии) бруса в его поперечных сечениях возникают только нормальные напряжения. Равнодействующая соответствующих элементарных сил σz dA — продольная сила N — может быть найдена с помощью метода сечений. Для того чтобы иметь возможность определить нормальные напряжения при известном значении продольной силы, необходимо устано­вить закон их распределения по поперечному сечению бруса.

Эта задача решается на основе гипотезы плоских сечении (гипотезы Я. Бернулли), которая гласит: сечения бруса, плоские и нормальные к его оси до деформа­ции, остаются плоскими и нормальными к оси и при деформации.

При растяжении бруса (изготовленного, например, для большей наглядности опыта из резины), на поверхности ко­торого нанесена система продольных и поперечных рисок, можно убедиться, что риски остаются прямоли­нейными и взаимно перпендикулярными, изменяются лишь расстояния: между поперечными рисками несколько увеличи­ваются, а между продольными — уменьшаются.

Описанный опыт можно рассматривать как подтверждение гипотезы плоских сечений; при этом предполагают, что внутри бруса деформации имеют тот же характер, что и на его поверхности.

Представим себе, что брус состоит из бесконечно большого числа продольных элементов, имеющих бесконечно малые («точечные») поперечные сечения. Эти элементы здесь и в даль­нейшем будем условно называть волокнами.

Из гипотезы Бернулли следует, что все волокна в рассма­триваемом случае деформируются одинаково. При однород­ном материале равным деформациям соответствуют одина­ковые напряжения. Таким образом, приходим к заключению, что при растяжении (сжатии) бруса нормальные напряжения рас­пределены по его поперечному сечению равномерно. Подчеркнем, что распределение напряжений не зависит от формы поперечного сечения.

Для определения нормальных напряжений используем вы­ражение . Вынося σz (постоянная величина!) за знак интеграла, получаем:

.= σzA,

где А – площадь поперечного сечения бруса.

Для нормальных напряжений принимают то же правило знаков, что и для продольных сил, т. е. при растяжении считают напряжения положи­тельными.

Фактически распределение напряжений в сечениях бруса, примыкающих к месту приложения внешних сил, зависит от способа приложения нагрузки и может быть неравномерным. Экспериментальные и теоретические исследования показывают, что это нарушение равномерности распределения напряжений носит местный характер. В сечениях бруса, отстоящих от ме­ста нагружения на расстоянии, примерно равном наибольшему из поперечных размеров бруса, распределение напряжений можно считать практически равномерным.

Рассмотренное положение является частным случаем принципа Сен-Венана, который можно сформулировать следующим образом: распределение напряжений существенно зависит от способа приложения внешних сил лишь вблизи места нагружения.

В частях, достаточно удаленных от места приложения сил, распределение напряжений практически зависит только от стати­ческого эквивалента этих сил, а не от способа их приложения.

Таким образом, применяя принцип Сен-Венана и отвлекаясь от вопроса о местных напряжениях, имеем возможность (как в этой, так и в последующих лекциях курса) не интересоваться конкретными способами приложения внешних сил. В местах резкого изменения формы и размеров поперечного сечения бруса также возникают местные напряжения. Это явле­ние называют концентрацией напряжений, которую в этой лекции учитывать не будем.

В тех случаях, когда нормальные напряжения в различных поперечных сечениях бруса неодинаковы, целесообразно по­казывать закон их изменения по длине бруса в виде графи­ка — эпюры нормальных напряжений.

Читайте также:  При растяжении связок чем мазать вольтарен

Источник

Продольная сила N, возникающая в поперечном сечении бруса, представляет, собой равнодействующую внутренних нормальных сил, распределенных по площади поперечного сечения, и связана с возникающими в этом сечении нормальными напряжениями зависимостью

Напряжение в сечении бруса при растяжении

где а — нормальное напряжение в произвольной точке поперечного сечения, принадлежащей элементарной площадке dA; А — площадь поперечного сечения бруса.

Произведение о • dA = dN представляет собой элементарную внутреннюю силу, приходящуюся на площадку dA.

Значение продольной силы N в каждом частном случае легко можно определить при помощи метода сечений, как показано в предыдущем разделе. Для нахождения же напряжений а в каждой точке поперечного сечения бруса надо знать закон их распределения по этому сечению.

Закон распределения нормальных напряжений в поперечном сечении бруса изображается обычно графиком, показывающим изменение их по высоте или ширине поперечного сечения. Такой график называют эпюрой нормальных напряжений (эпюрой а).

Выражение (9.1) может быть удовлетворено при бесконечно большом числе видов эпюр напряжений о (например, при эпюрах а, изображенных на рис. 9.2). Поэтому для выяснения закона распределения нормальных напряжений в поперечных сечениях бруса проводят эксперименты.

Если поперечное сечение перпендикулярно оси бруса, то при растяжении и сжатии нормальные напряжения распределены по поперечному сечению равномерно, т.е. а = const. Это позволяет в выражении (9.1) вынести о за знак интеграла. Таким образом,

Напряжение в сечении бруса при растяжении

откуда
Напряжение в сечении бруса при растяжении

Виды эпюр напряжений

Рис. 9.2. Виды эпюр напряжений:

а — прямоугольная; б — вогнутая; в — выпуклая

Определение напряжений в наклонных плоскостях

Рис. 9.3. Определение напряжений в наклонных плоскостях

Итак, в поперечных сечениях бруса при центральном растяжении или сжатии возникают равномерно распределенные нормальные напряжения, равные отношению продольной силы к площади поперечного сечения.

Для нормальных напряжений принимают знаков, как и для продольных сил, т.е. при растяжении нормальные напряжения считают положительными, при сжатии — отрицательными.

Для наглядного изображения изменения нормальных напряжений в поперечных сечениях стержня (по его длине) строится эпюра нормальных напряжений. Осью этой эпюры является отрезок прямой, равный длине стержня и параллельный его оси.

Рассмотрим теперь напряжения в наклонных сечениях бруса. Обозначим через а угол между наклонным сечением ппг и поперечным сечением пп2 (см. рис. 9.3, а). Угол а условимся считать положительным, когда поперечное сечение для совмещения с наклонным сечением нужно повернуть на этот угол против часовой стрелки.

Как уже известно, удлинения всех волокон, параллельных оси бруса, при его растяжении или сжатии одинаковы. Это позволяет предполагать, что напряжения р во всех точках наклонного (так же как и поперечного) сечения одинаковы.

Рассмотрим нижнюю часть бруса, отсеченную сечением пп1 (см. рис. 9.3, б). Из условий ее равновесия следует, что напряженияр параллельны оси бруса и направлены в сторону, противоположную силе Р, а внутренняя сила рАа, действующая в сечении ппь равна Р. Здесь Аа — площадь наклонного сечения ппь равная Л/cos а (где А — площадь поперечного сечения пп2 бруса).

Следовательно,

Напряжение в сечении бруса при растяжении

откуда

Напряжение в сечении бруса при растяжении

где Р/А = о — нормальные напряжения в поперечных сечениях бруса.

Разложим напряжение р на два составляющих напряжения: нормальное оа, перпендикулярное плоскости сечения ппь и касательное та, параллельное этой плоскости (рис. 9.3, в).

Значения оа и та получим из выражений

Напряжение в сечении бруса при растяжении

Нормальное напряжение считается обычно положительным при растяжении и отрицательным при сжатии. Касательное напряжение положительно, если изображающий его вектор стремится вращать тело относительно любой точки С, лежащей на внутренней нормали к сечению, по часовой стрелке. На рис. 9.3, в напряжения оа и та положительные.

Источник

Продольная сила N, возникающая в поперечном сечении бруса, представляет собой равнодействующую внутренних нормальных сил, распределенных по площади поперечного сечения, и связана с возникающими в этом сечении нормальными напряжениями зависимостью (4.1):

здесь — нормальное напряжение в произвольной точке поперечного сечения, принадлежащей элементарной площадке — площадь поперечного сечения бруса.

Произведение представляет собой элементарную внутреннюю силу, приходящуюся на площадку dF.

Величину продольной силы N в каждом частном случае легко можно определить при помощи метода сечений, как показано в предыдущем параграфе. Для нахождения же величин напряжений а в каждой точке поперечного сечения бруса надо знать закон их распределения по этому сечению.

Закон распределения нормальных напряжений в поперечном сечении бруса изображается обычно графиком, показывающим изменение их по высоте или ширине поперечного сечения. Такой график называют эпюрой нормальных напряжений (эпюрой а).

Выражение (1.2) может быть удовлетворено при бесконечно большом числе видов эпюр напряжений а (например, при эпюрах а, изображенных на рис. 4.2). Поэтому для выяснения закона распределения нормальных напряжений в поперечных сечениях бруса необходимо провести эксперимент.

Проведем на боковой поверхности бруса до его нагружения линии, перпендикулярные к оси бруса (рис. 5.2). Каждую такую линию можно рассматривать как след плоскости поперечного сечения бруса. При нагружении бруса осевой силой Р эти линии, как показывает опыт, остаются прямыми и параллельными между собой (их положения после нагружения бруса показаны на рис. 5.2 штриховыми линиями). Это позволяет считать, что поперечные сечения бруса, плоские до его нагружения, остаются плоскими и при действии нагрузки. Такой опыт подтверждает гипотезу плоских сечений (гипотезу Бернулли), сформулированную в конце § 6.1.

Читайте также:  Масла при растяжении связок

Представим мысленно брус состоящим из бесчисленного множества волокон, параллельных его оси.

Рис. 4.2

Рис. 5.2

Два любых поперечных сечения при растяжении бруса остаются плоскими и параллельными между собой, но удаляются друг от друга на некоторую величину; на такую же величину удлиняется каждое волокно. А так как одинаковым удлинениям соответствуют одинаковые напряжения, то и напряжения в поперечных сечениях всех волокон (а следовательно, и во всех точках поперечного сечения бруса) равны между собой.

Это позволяет в выражении (1.2) вынести величину а за знак интеграла. Таким образом,

откуда

Итак, в поперечных сечениях бруса при центральном, растяжении или сжатии возникают равномерно распределенные нормальные напряжения, равные отношению продольной силы к площади поперечного сечения.

При наличии ослаблений некоторых сечений бруса (например, отверстиями для заклепок), определяя напряжения в этих сечениях, следует учитывать фактическую площадь ослабленного сечения равную полной площади уменьшенной на величину площади ослабления

Для наглядного изображения изменения нормальных напряжений в поперечных сечениях стержня (по его длине) строится эпюра нормальных напряжений. Осью этой эпюры является отрезок прямой, равный длине стержня и параллельный его оси. При стержне постоянного сечения эпюра нормальных напряжений имеет такой же вид, как и эпюра продольных сил (она отличается от нее лишь принятым масштабом). При стержне же переменного сечения вид этих двух эпюр различен; в частности, для стержня со ступенчатым законом изменения поперечных сечений эпюра нормальных напряжений имеет скачки не только в сечениях, в которых приложены сосредоточенные осевые нагрузки (где имеет скачки эпюра продольных сил), но и в местах изменения размеров поперечных сечений. Построение эпюры распределения нормальных напряжений по длине стержня рассмотрено в примере 1.2.

Рассмотрим теперь напряжения в наклонных сечениях бруса.

Обозначим а угол между наклонным сечением и поперечным сечением (рис. 6.2, а). Угол а условимся считать положительным, когда поперечное сечение для совмещения с наклонным сечением надо повернуть на этот угол против часовой стрелки.

Как уже известно, удлинения всех волокон, параллельных оси бруса, при его растяжении или сжатии одинаковы. Это позволяет предполагать, что напряжения р во всех точках наклонного (так же как и поперечного) сечения одинаковы.

Рассмотрим нижнюю часть бруса, отсеченную сечением (рис. 6.2, б). Из условий ее равновесия следует, что напряжения параллельны оси бруса и направлены в сторону, противоположную силе Р, а внутренняя сила действующая в сечении равна Р. Здесь — площадь наклонного сечения равная (где — площадь поперечного сечения бруса).

Следовательно,

откуда

(5.2)

где — нормальные напряжения в поперечных сечениях бруса.

Разложим напряжение на два составляющих напряжения: нормальное перпендикулярное к плоскости сечения и касательное та, параллельное этой плоскости (рис. 6.2, в).

Рис. 6.2

Значения и та получим из выражений

(6.2)

Нормальное напряжение считается обычно положительным при растяжении и отрицательным при сжатии. Касательное напряжение положительно, если изображающий его вектор стремится вращать тело относительно любой точки С, лежащей на внутренней нормали к сечению, по часовой стрелке. На рис. 6.2, в показано положительное касательное напряжение та, а на рис. 6.2, г — отрицательное.

Из формулы (6.2) следует, что нормальные напряжения имеют значения от (при до нуля (при а ). Таким образом, наибольшие (по абсолютной величине) нормальные напряжения возникают в поперечных сечениях бруса. Поэтому расчет прочности растянутого или сжатого бруса производится по нормальным напряжениям в его поперечных сечениях.

Из формулы (7.2) следует, что касательные напряжения имеют значения от до (при ); отрицательный угол а показан на рис. 6.2, г.

Значение та равно нулю при (т. е. в поперечных сечениях бруса) и при Таким образом, в площадках с наибольшими и наименьшими нормальными напряжениями касательные напряжения равны нулю.

Определим значение касательных напряжений та, и та, в двух наклонных сечениях, перпендикулярных друг к другу (рис. 7.2).

Углы наклона этих сечений к плоскости поперечного сечения бруса находятся между собой в зависимости

По формуле (7.2)

Таким образом, касательные напряжения в двух взаимно перпендикулярных площадках равны друг другу по величине и обратны по знаку.

Рис. 7.2

Если продольная сила или размеры поперечных сечений бруса переменны по длине его оси, то напряжения и в различных точках наклонного сечения имеют различные значения. Они могут определяться по формулам (6.2) и (7.2), но для каждой точки в эти формулы следует подставлять соответствующее значение а, подсчитанное для поперечного сечения, проходящего через рассматриваемую точку.

Источник