На срез смятие растяжение

На срез смятие растяжение thumbnail

Сдвигом называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор — поперечная сила.

Рассмотрим брус, на который действуют две силы, равные по величине (рис. 20) и противоположно направленные. Эти силы перпендикулярны к оси бруса, и расстояние между ними ничтожно мало. При достаточной величине этих сил происходит срез.

Левая часть тела отделяется от правой по некоторому сечению АВ. Деформация, предшествующая срезу, которая заключается в перекашивании прямых углов элементарного параллелепипеда, называется сдвигом. На рис. 20, б показан сдвиг, происходящий в параллелепипеде до среза; прямоугольник abed превращается в параллелограмм abed‘. Величина ССК, на которую сечение cd сдвинулось относительно соседнего сечения ab, называется абсолютным сдвигом. Угол У, на который изменяются прямые углы параллелепипеда, называется относительным сдвигом.

Схема деформации сдвига

Рис. 20. Схема деформации сдвига: а) перерезывающие силы, действующие на брус; б) деформация элемента бруса abed

Ввиду малости деформаций угол У можно определить следующим образом:

На срез смятие растяжение

Очевидно, что в сечении АВ из шести внутренних силовых факторов будет возникать только поперечная сила Q, равная силе F:

На срез смятие растяжение

Данная поперечная сила Q вызывает появление только касательных напряжений т.

Подобная картина наблюдается в деталях, служащих для соединения отдельных элементов машин, — заклепках, штифтах, болтах и т. п., так как они во многих случаях воспринимают нагрузки, перпендикулярные их продольной оси.

Поперечная нагрузка в указанных деталях возникает, в частности, при растяжении (сжатии) соединяемых элементов. На рис. 21 приведены примеры штифтового (а), заклепочного (б), болтового (в) и шпоночного (г) соединений. Такой же характер нагружения соединительных деталей имеет место и при передаче вращающего момента, например в соединении шестерни с валом с помощью штифта, который при передаче момент от шестерни к валу (или наоборот) несет нагрузку, перпендикулярную его оси.

Схемы соединений

Рис. 21. Схемы соединений:

а) штифтового; б) заклепочного; в) болтового; г) шпоночного

Действительные условия работы рассматриваемых деталей сложны и во многом зависят от технологии изготовления отдельных элементов конструкции и ее сборки.

Практические расчеты этих деталей носят весьма условный характер и базируются на следующих основных допущениях:

  • 1. В поперечном сечении возникает только один внутренний силовой фактор — поперечная сила Q.
  • 2. Касательные напряжения, возникающие в поперечном сечении, распределены по его площади равномерно.
  • 3. В случае, если соединение осуществлено несколькими одинаковыми деталями (болтами и т. п.), принимается, что все они нагружены одинаково.

Разрушение соединительных элементов (в случае недостаточной прочности) происходит в результате их перерезывания по плоскости, совпадающей с поверхностью соприкосновения соединяемых деталей (см. рис. 21,6). Поэтому говорят, что эти элементы работают на срез, и возникающие в их поперечном сечении касательные напряжения также называют напряжениями среза и обозначают тср.

На основе сформулированных выше допущений получаем следующее условие прочности на срез:

На срез смятие растяжение

где гСр — расчетное напряжение среза, возникающее в поперечном сечении рассчитываемой детали; Q — поперечная сила, вызывающая срез соединительных элементов (болтов, заклепок и т. п.); [тср] — допускаемое напряжение на срез, зависящее от материала соединительных элементов и условий работы конструкции; ZAcp — суммарная площадь среза: LAcp — Асрт (здесь Аср — площадь среза одного соединительного элемента; z — число соединительных элементов; / — количество плоскостей среза в одном соединительном элементе).

В машиностроении при расчете штифтов, болтов, шпонок и т. д. принимают ср] = (0,5…0,6)*[о] — для пластичных материалов и [хср] = (0,8… 1,0)-[а] — для хрупких материалов. Меньшие значения принимают при невысокой точности определения действующих нагрузок и возможности не строго статического нагружения.

Формула (30) является зависимостью для проверочного расчета соединения на срез. В зависимости от постановки задачи она может быть преобразована для определения допускаемой нагрузки или требуемой площади сечения (проектный расчет).

Расчет на срез обеспечивает прочность соединительных элементов, но не гарантирует надежности конструкции (узла) в целом. Если толщина соединяемых элементов недостаточна, то давления, возникающие между стенками их отверстий и соединительными деталями, получаются недопустимо большими. В результате стенки отверстий обминаются и соединение становится ненадежным. В случае, если изменение формы отверстия значительно (при больших давлениях), а расстояние от его центра до края элемента невелико, часть элемента может срезаться (выколоться).

При этом давления, возникающие между поверхностями отверстий и соединительных деталей (рис. 22, а)у принято называть напряжениями смятия и обозначать их Ос*. Соответственно расчет, обеспечивающий выбор таких размеров деталей, при которых не будет значительных деформаций стенок отверстий, называют расчетом на смятие. Распределение напряжений смятия на поверхности контакта деталей весьма неопределенно (рис. 22, б) ив значительной степени зависит от зазора (в нена- груженном состоянии) между стенками отверстия и болтом (заклепкой и др.).

Передача давлений на стержень заклепки

Рис. 22. Передача давлений на стержень заклепки: а) общий вид заклепочного соединения; б) распределение напряжений по образующей; в) площадь смятия заклепки

Читайте также:  Растяжение мышц на спине шее

Расчет на смятие также носит условный характер и ведется в предположении, что силы взаимодействия между деталями равномерно распределены по поверхности контакта и во всех точках нормальны к этой поверхности.

Соответствующая расчетная формула имеет вид

На срез смятие растяжение

где F — нагрузка, вызывающая смятие; 1АСМ — суммарная площадь смятия; [С„] — допускаемое напряжение на смятие, устанавливаемое опытным путем. В расчетах принимают: [асм = (2,..2,5)-[[ас] — допускаемое напряжение на сжатие того из контактирующих материалов, прочность которого меньше.

За расчетную площадь смятия при контакте по плоскости (рис. 21, г) принимают действительную площадь соприкосновения Асм = 1-1, где / — размер шпонки в направлении, перпендикулярном плоскости чертежа; при контакте по цилиндрической поверхности (см. рис. 21, а, б, в и рис. 22, а, в) за расчетную площадь принимают площадь проекции поверхности контакта на диаметральную плоскость, т. е. Асм = d-d. При различной толщине соединяемых деталей в расчетную формулу следует подставлять d„i„. Суммарная площадь смятия ?АСМ = ACM-z (где z — число соединительных элементов).

Как уже говорили, в некоторых конструкциях соединительные детали (штифты, шпонки) работают на срез по продольным сечениям (см. рис. 21, г); предпосылки расчета и его методика остаются такими же, как и при срезе по поперечным сечениям.

Помимо расчетов на срез и смятие необходима проверка прочности соединяемых элементов на растяжение по ослабленному сечению. При этом площадь поперечного сечения принимается с учетом ослаблений:

На срез смятие растяжение

где А„етто — площадь ослабленного сечения.

На рис. 23 показано болтовое соединение. Силы F стремятся сдвинуть листы относительно друг друга. Этому препятствует болт, на который со стороны каждого листа передаются распределенные по контактной поверхности силы, равнодействующие которых равны F. Эти силы стремятся срезать болт по плоскости раздела листов т — л, так как в этом сечении действует максимальная поперечная сила Q = F.

Считая, что касательные напряжения распределены равномерно, получаем
Болтовое соединение

На срез смятие растяжение

Рис. 23. Болтовое соединение: а) общий вид; б) площадь смятия

Таким образом, условие прочности болта на срез принимает вид

На срез смятие растяжение

Отсюда можно найти диаметр болта:

На срез смятие растяжение

При расчете данного болтового соединения следует учитывать, что нагрузки, приложенные к элементам соединений, помимо среза вызывают смятие контактирующих поверхностей.

На срез смятие растяжение

где Аа, — представляет собой площадь проекции поверхности контакта на диаметральную плоскость (см. рис. 22, б, в): Аш = 3 d.

Тогда условие прочности на смятие болтового соединения (см. рис. 23)

откуда получаем

На срез смятие растяжениеНа срез смятие растяжение

Чтобы были удовлетворены условия прочности на срез и на смятие, из двух найденных диаметров следует взять больший, округлив его до стандартного значения.

На срез принято рассчитывать и некоторые сварные соединения (рис. 24).

Схема сварного соединения

Рис. 24. Схема сварного соединения: а) расчетная схема углового шва; б) площадь среза ABCD сварного шва

Если не учитывать наплывы, то в разрезе угловой шов имеет форму равнобедренного прямоугольного треугольника (см. рис. 24, а). Разрушение шва будет происходить по его минимальному сечению ABCD (см. рис. 24, б), высота которого к = 3- cos 45° =0,73 .

Для нахлесточного сварного соединения в расчет вводят оба шва. Запишем в этом случае условие прочности шва:

На срез смятие растяжение

где /т- расчетная длина торцевого шва; т,- допускаемое напряжение для сварных соединений.

Поскольку в начале и в конце шва из-за непровара качество его ухудшается, действительную его длину увеличивают по сравнению с расчетной на 10 мм:

На срез смятие растяжение

где / — действительная длина шва (на рис. 24, 6:1 = Ь).

Детали, работающие на сдвиг (срез) и смятие

1. Ось (рис. 25, а). В случае, если толщина детали 2 меньше, Ат = Sd;

На срез смятие растяжение

где / — количество плоскостей (площадей) среза.

2. Болт (рис. 25, б). В этом случае Аср -ndh

Соединения деталейНа срез смятие растяжение

Рис. 25. Соединения деталей: а) осью; б) болтом

3. Заклепка односрезная (рис. 26, а двухсрезная (рис. 26, б).

Расчетная схема заклепочного соединения

Рис. 26. Расчетная схема заклепочного соединения: а) с одной плоскостью среза; б) с двумя плоскостями среза

  • 4. Шпонки (рис. 27, а) работают на срез и смятие, но рассчитываются, в основном, только на смятие. Площади среза и смятия определяются по формулам Аср= Ья1 ACM=lt.
  • 5. Сварное соединение (рис. 27, б).

Угловой шов разрушается под углом 45° к плоскости разъема в результате среза: к — катет углового шва, подбирается по толщине свариваемого листа.

Двусторонний шов: Аср=2-0уЪсЬ = 1,4 к Ь.

Соединения

Рис. 27. Соединения: а) шпоночное; б) сварное

Пример 6. Определить требуемое число заклепок в соединении двух листов, нагруженных силами F = 85 кН (рис. 28). Диаметр заклепок d = 16 мм. Допускаемые напряжения [гср] = 100 МПа, [си] = 240 МПа.

Решение

Из условия прочности на срез

На срез смятие растяжение

где АСр=к d 2 / 4 — площадь среза; z — количество заклепок.

Тогда
К примеру расчета заклепочного соединения

На срез смятие растяжение

Рис. 28. К примеру расчета заклепочного соединения

Из условия прочности на смятие
На срез смятие растяжение где Асм = dS- площадь смятия; z — количество заклепок, получаем

На срез смятие растяжение

Вывод: для того чтобы не произошло ни среза, ни смятия заклепок, следует установить пять заклепок.

Читайте также:  Меновазин можно ли применять при растяжении связок

Пример 7. Стальной болт (рис. 29) нагружен силой F= 120 кН. Определить его диаметр d и высоту головки И, если допускаемые напряжения [ор] = 120 МПа, [zcp = бОМПа.

Решение

Определим диаметр болта из условия прочности на растяжение:

На срез смятие растяжение

откуда

На срез смятие растяжение

С некоторым округлением принимаем d= 36 мм.

Головка болта может срезаться по цилиндрической поверхности, условно отмеченной на рис. 29 волнистыми линиями. Площадь этой поверхности Аср= ndh.

Пример расчета болтового соединения

Рис. 29. Пример расчета болтового соединения

Условие прочности на срез

На срез смятие растяжение

откуда

На срез смятие растяжение

Округляя, окончательно принимаем h = 18 мм.

Пример 8. Проверить, удовлетворяют ли условию прочности лобовые швы двух стальных полос, сваренных внахлестку (рис. 30) и находящихся под нагрузкой F- 120 кН. Допускаемое напряжение [гэ] = 80 МПа. Ширина полос Ь- 150 мм и толщина их

Решение

Соединение может разрушиться от разрыва лобовых швов по вертикальным катетам сс’ или от среза этих швов по горизонтальным катетам сс». Однако практика показывает, что шов разрушается по биссекторному сечению, высота которого

На срез смятие растяжение

где к — катет шва, в нашем случае к = 8.

Такой шов рассчитывают условно на срез по биссекторному сечению из условия прочности:

На срез смятие растяжение

где Аср = 0,7 ЗЬ — площадь среза одного сварного шва.

Пример расчета сварного соединения

Рис. 30. Пример расчета сварного соединения

На срез смятие растяжение

Вывод: швы недогружены.

Пример 9. Вал передает крутящий момент, равный 27 кН м при помощи шлицевого соединения (рис. 31). Диаметр вала D = 80 мм, внутренний диаметр d = 68 мм, высота шлица h = 6 мм, ширина шлица b — 12 мм, длина соединения / = 100 мм. Число шлицев 2 = 6. Определить напряжения среза и смятия шлица.

Расчет шлицевого соединения

Рис. 31. Расчет шлицевого соединения

Решение

Полагая, что все шлицы нагружены одинаково, найдем усилие, приходящееся на один шлиц:

На срез смятие растяжение

Определим напряжение среза:

На срез смятие растяжение

Определим напряжение смятия:
На срез смятие растяжение

Источник

Работа на сдвиг явл основным видом работы большинства соединений.

Работа соединений с неконтролируемой силой затяжки (болты грубой, норм, повыш точности): на 1 этапе, пока силы трения между соединяемыми элементами не преодолены, сами болты не испытывают сдвигающих усилий и работают только на растяжение, все соединение работает упруго (на высокопрочных болтах соединения работают только так!). При увеличении внешней сдвиг силы, силы внутр трения оказываются преодоленными и наступает 2 этап – сдвиг всего соединения на величину зазора между поверхностью отвестия и стержнем болта. На 3 этапе сдвиг усилие в основном передается давлением поверхности отверстия на стержень болта, стержень болта и края отверстия постепенно обминаются, болт изгибается, растягивается (т.к. головка и гайка препятствуют свободному изгибу стержня). Плотностьт соединения расстраивается, силы трения уменьшаются и наступает 4 этап работы, характеризующийся упругопластической работой. Разрушение соединения происходит от среза болта, смятия и выкола одного из соединяемых Эл-тов или отрыва головки болта.

Расчет ведут исходя из возможного вида разрушения соединения по срезу болта при толстых соединяемых листах или по смятию поверхности отверстия при тонких листах:

-расчетное усилие, воспринимаемое одним болтом по срезу:

Nбср=RбсрγбAбnср

R-расчетное сопротивелние болтов срезу

γ-коэф усл работы соединения

А=пи*d2/4- площадь сечения болта по ненарезной части

d-диаметр болта

n-число плоскостей среза.

-расчетное усилие, воспринимаемое одним болтом по смятию элементов:

Nбсм=Rбсмγбd∑t

R-расчетное сопротивелние смятию элементов, соединяемых болтами

∑t-наим суммарная толщина элеметов, сминаемых в одном направлении.

-число болтов n в соединении при действии сдигающ силы N, приложенной к ЦТ соединения: n=N/Nбminγ

Nбmin- меньшее из верхних значений (для 1 болта)

γ-коэф условий работы конструкции.

Растяжение: болты раб на растяж-е, если внешняя сила направлена параллельно продольной оси болтов. При статич работе соединения качество отверстий и поверхности болта не играет никакой роли и болты норм и повш точности работают на растяжение одинаково. Начальные натяжения болтов не сказываются на их несущей способности на растяжение, т.к. начальные напряжения явл напряжениясми внутр-ми, уравновешенными силами сжатия между соединяемыми элементами. Внешн сила воспринимается силами сжатия между соединяемыми элементами. Когда внешн сила превысит внутр начальные усилия стягивания болта, монолитность соединения нарушися и растягивающее усилие в болте начнет увеличиваться. Т.о. прочность соединения определяется прочностью материала болтов на растяжение назвисимо от сила начального натяжения болта. Принимают те же болты, что при сдвиге.

-усилие, воспринимаемое одним болтом на растяжение:

Nбр=RбрAбнт

R- расчетное сопротивление болтов растяжению

Aбнт-площадь нетто болта (по резьбе)

Кол-во болтов при растяжении: n=N/Nбрγ

При одновременном действии сдвиг и растяг сил на соединение юзаем все формулы ;о)

Соединение на высокопрочных болтах. Работа и расчет

Работа

Высокопрочные болты – изготавливаются из высокопрочных, термически упрочненных сталей. Высокопрочные болты, как и болты нормальной точности устанавливаются в отверстия на 1-6 мм больше диаметра болта. Монолитность соединения обеспечивается трением между поверхностями соединяемых элементов, с большой силой стянутых высокопрочными болтами. Затягивают их тарировочными ключами, позволяющими контролировать силу натяжения болтов.

Читайте также:  Растяжение связок запястья методы лечения

       Высокопрочные болты обеспечивают надежное недеформативное соединение, хорошо работающее при любых видах силовых воздействий, поэтому они применятся в ответственных монтажных соединениях.

+: 1) Надежность, особенно при работе на динамические нагрузки; 2) Простота, не требует специального оборудования и подвода электроэнергии (как при сварке)

-: 1) Необходимы дополнительные детали (накладки); 2) Увеличивается масса элемента

Расчет

Соединения на высокопрочных болтах следует рассчитывать в предположении передачи действующих в стыках и прикреплениях усилий через трение, возникающее по соприкасающимся плоскостям соединяемых элементов от натяжения высокопрочных болтов. При этом распределение продольной силы между болтами следует принимать равномерным

       Расчетное усилие, воспринимаемое каждой поверхностью трения соединяемых элементов, стянутых одним высокопрочным болтом определяется по формуле:

— расчетное сопротивление высокопрочного болта растяжению.

— нормативное сопротивление болта растяжению. Определяется по таблице 61 СНиП в зависимости от диаметра болта и класса стали.

— площадь сечения

— коэффициент условий работы. Зависит от количества болтов в соединении:

N=1, 2, 3, 4 – 0,8; 5<=N<10 – 0,9; N>=10 — 1

— коэффициент трения; — коэффициент надежности. Принимаются по таблице 36 СНиП в зависимости от способа обработки поверхностей трения, способа регулирования натяжения болтов, вида нагрузки и разности номинальных размеров болта и отверстия.

Несущая способность одного высокопрочного болта определяется по формуле:

, где k – количество поверхностей трения.

Количество n высокопрочных болтов в соединении при действии продольной силы следует определять по формуле

                                     

Натяжение высокопрочного болта следует производить осевым усилием P = Rbh Abn.

Источник

Основные понятия. Расчетные формулы.

Лекция 4. Срез и смятие.

Детали, служащие для соединения отдельных элементов машин и строительных конструкций – заклепки, штифты, болты, шпонки – воспринимают нагрузки, перпендикулярные их продольной оси.

Справедливы следующие допущения.

1. В поперечном сечении возникает только один внутренний силовой фактор – поперечная сила Q.

2. Касательные напряжения, возникающие в поперечном сечении, распределены по его площади равномерно.

3. В случае если соединение осуществлено несколькими одинаковыми деталями, принимается, что все они нагружены одинаково.

Условие прочности при срезе (проверочный расчёт):

, (52)

где Q – поперечная сила

(P – общая нагрузка, z – число болтов, заклепок, i – число плоскостей среза крепежной детали)

Fср– площадь среза одного болта или заклепки, D – диаметр болта или заклёпки.

[τср] – допускаемое напряжение на срез, зависящее от материала соединительных элементов и условий работы конструкции. Принимают [τср]= (0,25…0,35)·σт, где σт – предел текучести.

Также справедливо: , т.к. , где n – коэффициент запаса прочности (для стали равный 1,5).

Если толщина соединяемых деталей недостаточна или материал соединяемых деталей более мягкий, чем у болта, штифта и т.д., то стенки отверстий обминаются, и соединение становится ненадежным, происходит смятие. При смятии действуют только нормальные напряжения – σ. Площадь смятия фактическая – это полуцилиндр, расчётная – это проекция полуцилиндра на диаметральную плоскость. Fсм, где d – диаметр болта или заклёпки, — минимальная толщина листа (если соединяемые листы разной толщины).

Проверочный расчёт на срез соединительных деталей:

Ниже указанная формула аналогична формуле (52)

,

Q – перерезывающая сила, равная по величине внешней

Где z – количество заклёпок (болтов)

i – количество срезов (равно количеству соединяемых листов минус один)

[τ] = допускаемое касательное напряжение при срезе. Зависит от марки материала заклёпки и от условий работы конструкции.

Проверочный расчёт на смятие соединяемых деталей:

, (53)

Где d – диаметр заклёпки (болта)

— минимальная толщина листа

z – количество заклёпок (болтов)

— допускаемое нормальное напряжение при смятии соединяемых деталей.

Проверочный расчёт при разрыве соединяемых деталей:

, (54)

Где (в — z d) – ширина листа без заклёпок

— минимальная толщина листа

— допускаемое нормальное напряжение при разрыве соединяемой детали.

Расчет выполняется для участка, где максимальное количество соединительных деталей (заклёпок, штифтов, болтов и т.д.).

Проектный расчёт (определение количества заклёпок).

, (55)

(56)

Выбираем максимальное количество заклёпок.

Определение максимально допускаемой нагрузки.

, (57)

, (58)

Из двух значений выбираем наименьшую нагрузку.

Задача: рассчитать на прочность заклёпочное соединение (на срез, на смятие, на разрыв соединяемого листа).

Дано:

Растягивающее усилие Р=150Кн.,

допускаемое напряжение среза

допускаемое напряжение при смятии

допускаемое напряжение при растяжении ,

общее количество заклёпок z=5 шт. (в одном ряду 3, в другом 2),

диаметр заклёпки .

соединяемых листа 2, следовательно количество срезов i=1 (см. рис. 19), габаритные размеры указаны в мм.,

минимальная толщина листа 10мм.

Рис. 19

Решение:

1. Выполним проверочный расчет заклёпок на срез

— это значит, что прочность на срез обеспечена.

2. Выполним проверочный расчёт на смятие соединяемых листов

Сминаться будет более тонкий лист, расчетная площадь смятия равна проекции полуцилиндра на диаметральную плоскость.

— прочность на смятие обеспечена.

3. Выполним проверочный расчёт на растяжение (разрыв соединяемого листа). Разрыв может произойти в месте, где установлено максимальное количество заклёпок.

прочность обеспечена.

Источник