Модуль упругости при растяжении полипропилена

Модуль упругости при растяжении полипропилена thumbnail
  • Полиэтилен (РЕ)
  • Поливинилхлорид (PVC)
  • Поливинилденфторид (PVDF)
  • Этилен-трифторхлорэтилен (E-CTFE)

Полипропилен (РР) получают полимеризацией газа пропилена с применением катализаторов. Получившийся материал, благодаря своим физико-химическим свойствам, нашел широчайшее применение в различных отраслях промышленности, в том числе на нашем предприятии при производстве емкостей и резервуаров.

ФИЗИЧЕСКИЕ СВОЙСТВА ПОЛИПРОПИЛЕНА

Полипропилен обладает высокой ударной вязкостью и повышенной износостойкостью, стоек к многократным изгибам (при холодной гибки ограничен радиус изгиба), физиологически безвреден и годен к контакту с питьевой водой и пищевыми продуктами, водонепроницаем, обладает коррозионной стойкостью, низкой теплопроводностью, точка плавления 160˚С. Полипропилен не обладает запахом, не тонет в воде, в огне горит без дыма, запах при горении острый и сладковатый, плавится каплями.

По способу полимеризации полипропилен делится на гомополимер, получаемый полимеризацией одинаковых мономеров, и сополимер, получаемый полимеризацией разных мономеров. Гомополимеры (PP-H) обладают высокой твердостью, жесткостью и прочностью на растяжение, но при температуре близкой к нулю становятся хрупкими. В состав сополимеров (PP-В/PP-C) входит полиэтилен, поэтому сополимеры обладают высокой пластичностью и могут использоваться при температуре до -20˚С, но по сравнению с гомополимером менее устойчивы к высоким температурам.

На нашем предприятии для изготовления резервуаров применяется листовой полипропилен, в форме плит различной толщины, производства ведущих европейских производителей. Изготовление полипропиленовых плит производится методом экструзии, при котором расплавленная полипропиленовая масса на экструзионных линиях проходит через формообразующее устройство, геометрические размеры которого задают размеры полипропиленовому листу. При изготовлении резервуаров соединение полипропиленовых листов производится на специальных станках контактной стыковой сварки. Отдельные элементы соединяются экструзионной сваркой.

Физические свойства плит полипропилена на примере гомополимера PP-DWU AlphaPlus и блок-сополимера PP-В немецкого производителя Simona AG представлены в таблице:

СвойстваPP-DWU AlphaPlusPP-B

Плотность, г/см3

0,915

0,910

Напряжение при растяжении,МПа

33

24

Температурный диапазон применения, ˚С

0 — +100

-20 — +80

Удлинение при разрыве, %

70

67

Теплопроводность, В/мК

0,22

0,22

Модуль упругости при растяжении, МПа

1700

1000

Ударная вязкость, кДж/м2

9

ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИПРОПИЛЕНА PP (ПП)

Полипропилен благодаря своей неполярной структуре обладает высокой химической устойчивостью к контакту с органическими и неорганическими кислотами, кроме высококонцентрированных сильных окислителей (HNO3, H2SO4), щелочами, растворами солей, минеральными и растительными маслами, спиртосодержащими продуктами. Полипропилен инертен при контакте с углеводородами, но при длительном контакте с их парами, особенно при температурах свыше 30˚С, происходит набухание. Полипропилен подвержен деструкции при контакте с галогенами, окисляющими газами и солями.

Полипропилен обладая высокой химической устойчивостью и прочностью, является универсальным материалом для изготовления гальванических ванн.

При высоких температурах устойчивость полипропилена к химическим веществам может существенно изменяться. Поэтому очень важно при конструировании учитывать температурный диапазон эксплуатации изделий из полипропилена, контактирующих с химическими растворами.

На полипропилен незначительное влияние оказывает ионизирующее облучение, поэтому материал широко используется в медицине.

Таблица химической стойкости полипропилена.

Приведенная таблица химической стойкости является весьма условной. Для расчета устойчивости полипропилена к химическим растворам и подбора материала при заданных температурах и условиях эксплуатации обращайтесь к нашим специалистам.

По пожаробезопасности полипропилен, применяющийся в резервуаростроении, отнесен, согласно стандарту DIN 4102, к классу В1 – трудно возгораемые. Температура самовоспламенения полипропилена около 350˚С. Горение полипропилена происходит с выделением углекислого и угарного газа, воды и незначительного количества сажи. Тушение полипропилена может производится водой.

На практике при изготовлении резервуаров применение полипропилена ограничивается его свойствами. Для адаптации свойств материала к определенным условиям в полипропилен добавляют специальные присадки. Например, сам по себе полипропилен практически не электропроводен, но в ряде случаев, например при изготовлении резервуаров для хранения взрывоопасных сред, необходимо чтобы материал при образовании электростатического заряда отводил его. Для увеличения электропроводности в материал добавляют токопроводящие вещества. Поэтому для изготовления резервуаров для хранения взрывоопасных растворов мы применяем электропроводящий полипропилен.

При эксплуатации изделий из полипропилена, под воздействием различных климатических факторов (свет, влага) происходит разрушение материала, которое называется старением. Процессы старения приводят к изменению механических свойств — потере эластичности и снижению механической прочности полипропилена, ухудшению диэлектрических показателей. Для защиты от старения в полипропилен добавляют малые дозы низкомолекулярных добавок — стабилизаторы. Для защиты полипропилена от светового старения применяются светостабилизаторы (ультрафиолетовые стабилизаторы). Действие светостабилизаторов заключается в фильтрации ультрафиолетового излучения и его преобразования в тепловую энергию. Защиту от термоокислительного старения обеспечивают стабилизаторы, называемые антиоксидантами.

Читайте также:  Работа на растяжение или сжатие

Источник

Определение прочности материала при растяжении проводится по ГОСТ 11262, а определение модуля упругости – по ГОСТ 9550-81.

Образцы для испытаний термопластов и армированных пластиков должны соответствовать типу и размерам, указанным на рисунке и в таблице.

Рисунок 1: Образцы для испытаний материалов на растяжение (Числовые значения параметров приведены в таблице 1)

Образец типа 1 применяют для испытаний пластмасс с высоким относительным удлинением при разрыве (полиэтилен, пластифицированный поливинилхлорид), образец типа 2 – для испытаний большинства материалов (термореактивные, термопластичные и слоистые пластики), образец типа 3 в форме полоски – для испытаний стеклопластиков.

Таблица 1

Размеры образцов, ммОбразец типа
123
Общая длина l1, не менее115150250
Расстояние между метками, определяющими положение кромок зажимов на образце, l280±5115±5170±5
Длина рабочей части l333±160±1
Расчетная длина l25±150±150±1
Ширина головки b125±0,520±0,525±0,5
Ширина рабочей части b26±0,410±0,5
Толщина h2±0,2(от 1 до 3)4±0,4(от 1 до 10)2±0,2(от 1 до 6)

Диаграмму растяжения строят при нагружении образца до разрушения. Скорость нагружения – 2,0±0,4 мм/мин. По удлинению в момент разрушения Dl определяют относительно удлинение при разрыве e.

По максимальному значению нагрузки Fpвычисляют предел прочности при растяжении.

Удлинение измеряют прибором с погрешностью не более 2% в диапазоне 0,1–0,5 мм. База преобразователя перемещения L, устанавливаемого на образец, не менее 20 мм.

По диаграмме деформирования определяют значения нагрузок F1 и F2 и удлинение Dl1 и Dl2, соответствующих относительному удлинению 0,1% и 0,3% и рассчитывают модуль упругости при растяжении.

При невозможности записи диаграммы деформирования модуль упругости определяют при циклическом нагружении образца (до получения стабильных приращений) в диапазоне усилий F1 = (0,05–0,1)×Fр до F2 = 0,2×Fр. При значениях нагрузки F1 и F2 определяют приращение Dl на базе L.

 Испытания полимерных материалов на растяжение:  экспериментальная часть

 Испытания на растяжение полимерных материалов проводят при температуре 23±2°С в соответствии с ГОСТ 11262–80 и ГОСТ 9550–81.

Перед испытанием замеряют ширину и толщину образцов в рабочей части с точностью до 0,01 мм не менее чем в трех местах и вычисляют площадь поперечного сечения. В расчет принимают наименьшую площадь поперечного сечения.

Перед испытанием на образец наносят необходимые метки (без повреждения образцов), ограничивающие его базу и положение кромок захватов (таблица).

Образцы закрепляют в зажимы испытательной машины по меткам, определяющим положение кромок зажимов, таким образом, чтобы продольные оси зажимов и ось образца совпадали между собой и с направлением движения подвижного зажима. Зажимы затягивают равномерно, чтобы не было проскальзывания образца в процессе испытания, но при этом не происходило его разрушение в месте закрепления. Далее настраивают прибор для замера деформаций.

Затем образец нагружают возрастающей нагрузкой, величину которой фиксируют по шкале динамометра. Скорость нагружения составляет 25 мм/мин при определении прочности и относительного остаточного удлинения. В момент разрушения фиксируют наибольшее усилие и определяют прочность при растяжении по формуле

где Fp – нагрузка, при которой образец разрушился, Н; S = b×h – начальное поперечное сечение образца, мм2; b, h – ширина и толщина образца соответственно, мм.

Образцы, разрушившиеся за пределами рабочей части, за результат не принимают.

По удлинению в момент разрушения Dl определяют относительное удлинение при разрыве e:

где Dl – изменение расчетной длины образца в момент разрыва, мм; l – расчетная длина, мм.

Модуль упругости определяют по формуле

где F1, F2 – значения нагрузок, соответствующих относительному удлинению 0,1% и 0,3%, Н; Dl1, Dl2 – удлинение при нагрузках F1, F2 соответственно, мм.

За результат измерения прочности, относительного удлинения и модуля упругости принимают среднее арифметическое значение для всех образцов.

Результаты испытаний заносят в протокол.

 Образцы протоколов испытаний на растяжение

ПРОТОКОЛ № ____ от _____________

Испытания на растяжение по ГОСТ 11262–80

  1. ИСПЫТАТЕЛЬНАЯ МАШИНА (тип, номер, год выпуска, шкала)
  2. АППАРАТУРА: (измеритель удлинения, тип и основные характеристики)
  3. МАТЕРИАЛ: (тип, марка или состав связующего, ГОСТ, дата изготовления)
  4. ОБРАЗЦЫ: (тип, размеры, количество, метод изготовления)
  5. УСЛОВИЯ КОНДИЦИОНИРОВАНИЯ: температура 20 °С, относительная влажность 50% в течение 24 ч.
  6. УСЛОВИЯ ПРОВЕДЕНИЯ ИСПЫТАНИЯ: (температура, влажность, скорость нагружения)
  7. РЕЗУЛЬТАТЫ ИСПЫТАНИЙ:
№ п/п l0, ммРазмеры образцов, ммS0, мм2 F, Нsр, МПа 
 h b
1      
      
Среднее арифметическое значение, МПа 
Среднее квадратическое отклонение 
Коэффициент вариации, % 
Читайте также:  Как долго болят лодыжки при растяжении

Испытания провел:

ПРОТОКОЛ № ____ от _____________

Определения модуля упругости при растяжении по ГОСТ 9550–81

  1. ИСПЫТАТЕЛЬНАЯ МАШИНА (тип, номер, год выпуска, шкала)
  2. АППАРАТУРА: (измеритель удлинения, тип и основные характеристики)
  3. МАТЕРИАЛ: (тип, марка или состав связующего, ГОСТ, дата изготовления)
  4. ОБРАЗЦЫ: (тип, размеры, база, количество, метод изготовления)
  5. УСЛОВИЯ КОНДИЦИОНИРОВАНИЯ: температура 20 °С, относительная влажность 50 % в течение 24 часов.
  6. УСЛОВИЯ ПРОВЕДЕНИЯ ИСПЫТАНИЯ: (температура, влажность, скорость нагружения)
  7. РЕЗУЛЬТАТЫ ИСПЫТАНИЙ:
№ п/п l0, ммРазмеры образцов, ммS0, мм2Нагрузка, НУдлинение, мм Ер, ГПа
hb F1 F2 l1 l2
1         
         
Среднее арифметическое значение 
Среднее квадратическое отклонение 
Коэффициент вариации, % 

Испытания провел:

 Читайте также: Механические свойства полимеров

Список литературы:
Пластмассы. Метод определения модуля упругости при растяжении, сжатии и изгибе: ГОСТ 9550–81. – Взамен ГОСТ 9550–71; введ. 01.07.1982. – М.: ИПК Изд-во стандартов, 2004. – 8 с.
Пластмассы. Метод испытания на растяжение: ГОСТ 11262–80. – Взамен ГОСТ 11262–76; введ. 01.12.1980. – М.: Изд-во стандартов, 1986.– 16 с.
Пластмассы. Методы механических испытаний. Общие требования: ГОСТ 14359–69. – Введен 01.01.1970. – М.: Изд-во стандартов, 1979.– 21 с.
 Расчеты и испытания на прочность. Методы механических испытаний композиционных материалов с полимерной матрицей (композитов). Метод испытания плоских образцов на растяжение при нормальной, повышенной и пониженной температурах: ГОСТ 25.601–80. – Введен 01.07.81. – М.: Изд-во стандартов, 1980.– 16 с.
Автор: Кордикова Е.И., кандидат технических наук, доцент кафедры механики материалов и конструкций БГТУ
Источник: Композиционные материалы: Лабораторный практикум, 2007 год
Дата в источнике: 2007 год

Источник

ПОЛИПРОПИЛЕНЫ СВОЙСТВА

  • Получение
  • Молекулярное строение
    • Физико-механические свойства
    • Химические свойства
    • Теплофизические свойства
    • Электрические свойства
  • Переработка
  • Применение
  • Ссылки

Полипропилен —полимер пропилена (пропена).

 Получение

Полипропилен получают полимеризацией пропилена в присутствии металлокомплексных катализаторов , например, катализаторов Циглера—Натта (например, смесь Ti4 и R3):

nCH2=CH(CH3) > [-CH2-CH(CH3)-]n

Международное обозначение — PP.

Параметры, необходимые для получения полипропилена близки к тем, при которых получаютполиэтилен низкого давления. При этом, в зависимости от конкретного катализатора, может получаться любой тип полимера или их смеси.

Полипропилен выпускается в виде порошка белого цвета или гранул с насыпной плотностью 0,4—0,5 г/см3. Полипропилен выпускается стабилизированным, окрашенным и неокрашенным.

Молекулярное строение

Цепочки молекул полипропилена.

По типу молекулярной структуры можно выделить три основных типа: изотактический, синдиотактический и атактический. Изотактический и синдиотактический образуются случайным образом;

Физико-механические свойства.

В отличие от полиэтилена, полипропилен менее плотный (плотность 0,91 г/см3, что является наименьшим значением вообще для всех пластмасс), более твёрдый (стоек к истиранию), более термостойкий (начинает размягчаться при 140 °C, температура плавления 175 °C), почти не подвергается коррозионному растрескиванию. Обладает высокой чувствительностью к свету и кислороду (чувствительность понижается при введении стабилизаторов).

Поведение полипропилена при растяжении ещё в большей степени, чем полиэтилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения разрушающее напряжение при растяжении полипропилена значительно ниже его предела текучести при растяжении.

Показатели основных физико-механических свойств полипропилена приведены в таблице:

Физико-механические свойства полипропилена

Плотность, г/см30,90—0,91
Разрушающее напряжение при растяжении,  кгс/см  >250—400
Относительное удлинение при разрыве, %200—800
Модуль упругости при изгибе, кгс6700—11900
Предел текучести при растяжении,  кгс/см?250—350
Относительно удлинение при пределе текучести, %10—20
Ударная вязкость с надрезом, кгс•см/см233—80
Твердость по Бринеллю, кгс/мм26,0—6,5

 Химические свойства

Полипропилен химически стойкий материал. Заметное воздействие на него оказывают только сильные окислители —хлорсульфоновая кислота, дымящая азотная кислота, галогены, олеум. Концентрированная 58%-ная серная кислота и 30%-ная перекись водорода при комнатной температуре действуют незначительно. Продолжительный контакт с этими реагентами при 60 °C и выше приводит к деструкции полипропилена.

В органических растворителях полипропилен при комнатной температуре незначительно набухает. Выше 100 °C он растворяется в ароматических углеводородах, таких, как бензол, толуол. Данные о стойкости полипропилена к воздействию некоторых химических реагентов приведены в таблице.

Химическая стойкость полипропилена

СредаТемпература, °CИзменение массы, %Примечание
Продолжительность выдержки образца в среде реагента 7 суток
Азотная кислота, 50%-ная70-0,1Образец растрескивается
Натр едкий, 40%-ный70Незначительное 
90
Соляная кислота, конц.70+0,3 
90+0,5
Продолжительность выдержки образца в среде реагента 30 суток
Азотная кислота, 94%-ная20-0,2Образец хрупкий
Ацетон20+2,0 
Бензин20+13,2
Бензол20+12,5
Едкий натр, 40%-ный20Незначительное
Минеральное масло20+0,3
Оливковое масло20+0,1
Серная кислота,80%-ная20НезначительноеСлабое окрашивание
Серная кислота,98%-ная20>> 
Соляная кислота, конц.20+0,2
Трансформаторное масло20+0,2
Читайте также:  Растяжение связок колена срок восстановления

Вследствие наличия третичных углеродных атомов полипропилен более чувствителен к действию кислорода, особенно при воздействии ультрафиолета и повышенных температурах. Этим и объясняется значительно большая склонность полипропилена к старению по сравнению с полиэтиленом. Старение полипропилена протекает с более высокими скоростями и сопровождается резким ухудшением его механических свойств. Поэтому полипропилен применяется только в стабилизированном виде. Стабилизаторы предохраняют полипропилен от разрушения как в процессе переработки, так и во время эксплуатации. Полипропилен меньше, чем полиэтилен подвержен растрескиванию под воздействием агрессивных сред. Он успешно выдерживает стандартные испытания на растрескивание под напряжением, проводимые в самых разнообразных средах. Стойкость к растрескиванию в 20%-ном водном растворе эмульгатора ОП-7 при 50 °C для полипропилена с показателем текучести расплава 0,5—2,0 г/10 мин, находящегося в напряженном состоянии, более 2000 ч.

Полипропилен — водостойкий материал. Даже после длительного контакта с водой в течение 6 месяцев (при комнатной температуре) водопоглощение полипропилена составляет менее 0,5%, а при 60 С — менее 2%.

Теплофизические свойства

Полипропилен имеет более высокую температуру плавления, чем полиэтилен, и соответственно более высокую температуру разложения. Чистый изотактический полипропилен плавится при 176 °C. Максимальная температура эксплуатации полипропилена 120—140 С. Все изделия из полипропилена выдерживают кипячение, и могут подвергаться стерилизации паром без какого-либо изменения их формы или механических свойств.

Превосходя полиэтилен по теплостойкости, полипропилен уступает ему по морозостойкости. Его температура хрупкости ( морозостойкости) колеблется от -5 до -15 С. Морозостойкость можно повысить введением в макромолекулу изотактического полипропилена звеньев пропилена с этиленом).

Показатели основных теплофизических свойств полипропилена приведены в таблице:

Теплофизические свойства полипропилена

Температура плавления, °C160—170
Теплостойкость по методу НИИПП, °C160
Удельная теплоёмкость (от 20 до 60?С), кал/(г•°C)0,46
Термический коэффициент линейного расширения (от 20 до 100 °C), 1/°C1,1*10-4
Температура хрупкости, °CОт -5 до -15

 Электрические свойства

Показатели электрических свойств полипропилена приведены в таблице:

Электрические свойства полипропилена

Удельное объёмное , Ом•см1016—1017
Диэлектрическая проницаемость при 106 Гц2,2
Тангенс угла диэлектрических потерь при 106 Гц2*10-4-5*10-5
Электрическая прочность (толщина образца 1 мм), кВ/мм30—40

Викопедия

Физико-механические свойства полипропилена различных марок

Показатели / марка

01П10

002

02П10

003

03П10

005

04П10

010

05П10

020

06П10

040

07П10

080

08П10

080

09П10

200

Насыпная плотность, кг/л, не менее

0,47

0,47

0,47

0,47

0,47

0,47

0,47

0,47

0,47

Показатель текучести расплава, г/10 мин

?0

0,2-0,4

0,4-0,7

0,7-1,2

1,2-3,5

3-6

5-15

5-15

15-25

Относительное удлинение при разрыве, %, не менее

600

500

400

300

300

Предел текучести при разрыве,% не менее

260

280

270

260

260

Стойкость к растрескиванию, ч, не менее

400

400

400

400

400

Характеристическая вязкость в декалине при 135 °C, 100 мл/г

2,0-2,4

1,5-2,0

1,5-2,0

0,5-15

Содержание изотактической фракции, не менее

95

93

95

93

Содержание атактической фракции, не более

1,0

1,0

1,0

1,0

Морозостойкость, °C, не ниже

-5

-5

-5

Продолжение »

01 декабря 2013

сезонное снижение цен

дрес: ООО «КрасЭл» г. Красноярск т/ф. (391)252-78-63, 252-78-50, 252-78-31, Е-mail: kras.el@bk.ru .
ООО «КрасИзолит-М» г. Москва т.(499)2724856, 2724856@bk.ru , KRASEL LTD Krasnoyarsk t./f. (391)252-78-63, 252-78-50, 252-78-31, E-mail: kras.el@bk.ru

KRASIZOLIT-M LTD  Moscow  t. (499)2724856.   2724856@bk.ru

© krasizolit 2002

ООО «КрасЭл» г. Красноярск т/ф. (391)252-78-63, 252-78-50, 252-78-31, Е-mail: kras.el@bk.ru .
  ООО «КрасИзолит-М» г. Москва т.(499)2724856, 2724856@bk.ru

Источник