Модуль юнга для деформации растяжения

Мо́дуль Ю́нга (синонимы: модуль продольной упругости, модуль нормальной упругости) — физическая величина, характеризующая способность материала сопротивляться растяжению, сжатию при упругой деформации[1]. Обозначается большой буквой Е.

Назван в честь английского физика XIX века Томаса Юнга.

В динамических задачах механики модуль Юнга рассматривается в более общем смысле — как функционал деформируемой среды и процесса.

В Международной системе единиц (СИ) измеряется в ньютонах на квадратный метр или в паскалях. Является одним из модулей упругости.

Модуль Юнга рассчитывается следующим образом:

где:

Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

где  — плотность вещества.

Связь с другими модулями упругости[править | править код]

В случае изотропного тела модуль Юнга связан с модулем сдвига и модулем объёмной упругости соотношениями

и

где  — коэффициент Пуассона.

Температурная зависимость модуля Юнга[править | править код]

Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости определяется как вторая производная от внутренней энергии по соответствующей деформации . Поэтому при температурах ( — температура Дебая)
температурная зависимость модуля упругости определяется простым соотношением

где
 — адиабатический модуль упругости идеального кристалла при ;  — дефект модуля, обусловленный тепловыми фононами;  — дефект модуля, обусловленный тепловым движением электронов проводимости[2]

Значения модуля Юнга для некоторых материалов[править | править код]

Значения модуля Юнга для некоторых материалов приведены в таблице

См. также[править | править код]

  • Закон Гука

Примечания[править | править код]

  1. Главный редактор А. М. Прохоров. Модули упругости // Физический энциклопедический словарь. — М.: Советская энциклопедия (рус.). — 1983. — Статьи в Физическом энциклопедическом словаре и Физической энциклопедии.
  2. Паль-Валь Л. Н., Семеренко Ю. А., Паль-Валь П. П., Скибина Л. В., Грикуров Г. Н. Исследование акустических и резистивных свойств перспективных хромо-марганцевых аустенитных сталей в области температур 5—300 К // Конденсированные среды и межфазные границы. — 2008. — Т. 10, вып. 3. — С. 226—235.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Анурьев В. И. Справочник конструктора-машиностроителя в 3т. Т. 1/В. И. Анурьев; 8-е изд., перераб и доп. Под ред. И. Н. Жестковой. — М.: Машиностроение, 2001. — С. 34. ISBN 5-217-02963-3
  4. Галашев А. Е., Рахманова О. Р. Устойчивость графена и материалов на его основе при механических и термических воздействиях (рус.) // Успехи физических наук. — М.: РАН, ФИАН, 2014. — Т. 184, вып. 10. — С. 1051.
  5. В.Д. Нацик, П.П. Паль-Валь, Л.Н. Паль-Валь, Ю.А. Семеренко. Низкотемпературный a-пик внутреннего трения в ниобии и его связь с релаксацией кинков на дислокациях // ФНТ. — 2001. — Т. 27, вып. 5. — С. 547—557.
  6. П.П. Паль-Валь, В.Д. Нацик, Л.Н. Паль-Валь, Ю.А. Семеренко. Нелинейные акустические эффекты в монокристаллах ниобия, обусловленные дислокациями // ФНТ. — 2004. — Т. 30, вып. 1. — С. 115—125.

Литература[править | править код]

  • Волькенштейн В. С. Сборник задач по общему курсу физики / В. С. Волькенштейн. — СПб.: Лань, 1999. — 328 с.

Ссылки[править | править код]

  • Квазистатический модуль Юнга (код на Mathcad).

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 января 2018;
проверки требуют 8 правок.

Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. В области упругой деформации модуль упругости тела в общем случае зависит от напряжения и определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона начального линейного участка диаграммы напряжений-деформаций:

где:

В наиболее распространенном случае зависимость напряжения и деформации линейная (закон Гука):

.

Если напряжение измеряется в паскалях, то, поскольку деформация является безразмерной величиной, единицей измерения Е также будет паскаль. Альтернативным определением является определение, что модуль упругости — это напряжение, достаточное для того, чтобы вызвать увеличение длины образца в два раза. Такое определение не является точным для большинства материалов, потому что это значение намного больше чем предел текучести материала или значения, при котором удлинение становится нелинейным, однако оно может оказаться более интуитивным.

Разнообразие способов, которыми могут быть изменены напряжения и деформации, включая различные направления действия силы, позволяют определить множество типов модулей упругости. Здесь даны три основных модуля:

  • Модуль Юнга (E) характеризует сопротивление материала растяжению/сжатию при упругой деформации, или свойство объекта деформироваться вдоль оси при воздействии силы вдоль этой оси; определяется как отношение напряжения к деформации сжатия (удлинения). Часто модуль Юнга называют просто модулем упругости.
  • Модуль сдвига или модуль жесткости (G или ) характеризует способность материала сопротивляться изменению формы при сохранении его объёма; он определяется как отношение напряжения сдвига к деформации сдвига, определяемой как изменение прямого угла между плоскостями, по которым действуют касательные напряжения. Модуль сдвига является одной из составляющих явления вязкости.
  • Модуль объёмной упругости или Модуль объёмного сжатия (K) характеризует способность объекта изменять свой объём под воздействием всестороннего нормального напряжения (объёмного напряжения), одинакового по всем направлениям (возникающего, например, при гидростатическом давлении). Он равен отношению величины объёмного напряжения к величине относительного объёмного сжатия. В отличие от двух предыдущих величин, модуль объёмной упругости невязкой жидкости отличен от нуля (для несжимаемой жидкости — бесконечен).

Существуют и другие модули упругости: коэффициент Пуассона, параметры Ламе.

Читайте также:  Лечение сильного растяжения связок

Гомогенные и изотропные материалы (твердые), обладающие линейными упругими свойствами, полностью описываются двумя модулями упругости, представляющими собой пару любых модулей. Если дана пара модулей упругости, все другие модули могут быть получены по формулам, представленным в таблице ниже.

В невязких течениях не существует сдвигового напряжения, поэтому сдвиговый модуль всегда равен нулю. Это влечёт также и равенство нулю модуля Юнга.

Модули упругости (Е) для некоторых веществ:

МатериалЕ, МПаЕ, кгс/см²
Алюминий70000713 800
Вода203020300
Дерево10000102 000
Кость30000305 900
Медь1000001 020 000
Резина550
Сталь2000002 039 400
Стекло70000713 800

См. также[править | править код]

  • Модуль Юнга
  • Модуль сдвига G
  • Жёсткость
  • Предел текучести
  • Упругость
  • Предел прочности
  • Упругие волны
  • Уравнение Гассмана
  • en:Dynamic modulus

Ссылки[править | править код]

  • Free database of engineering properties for over 63,000 materials
  • Расчёт модуля упругости по ПНАЭ Г-7-002-86
  • Иомдина Е. Н. Механические свойства тканей глаза человека. (недоступная ссылка)

Литература[править | править код]

  • Модули упругости // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). — 3-е изд. — М.: Сов. энциклопедия, 1974. — Т. XVI. — С. 406. — 616 с.
  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4

Источник

Все твердые тела, как кристаллические, так и аморфные, имеют свойство изменять свою форму под воздействие приложенной к ним силы. Другими словами, они подвергаются деформации. Если тело возвращается к исходным размерам и форме после того, как внешнее усилие прекращает свое воздействие, то его называют упругим, а его деформацию считают упругой. Для любого тела существует предел приложенного усилия, после которого деформация перестает быть упругой, тело не возвращается в исходную форму и к исходным размерам, а остается в деформированном состоянии или разрушается. Теория упругих деформаций тел была создана в конце 17 века британским ученым Р. Гуком и развита в трудах его соотечественника Томаса Юнга. В их честь Гука и Юнга были названы соответственно закон и коэффициент, определяющий степень упругости тел. Он активно применяется в инженерном деле в ходе расчетов прочности конструкций и изделий.

Модуль Юнга

Основные сведения

Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м2 или в Па.

Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (1012Па)

Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.

Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.

График теста на растяжение

E- это частное от деления нормальных напряжений σ на относительное удлинение ε.

E=α/ε

Закон Гука также можно сформулировать и с использованием модуля Юнга.

Физический смысл модуля Юнга

Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.

Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.

Виды деформации

Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.

В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня  и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:

Δl = α * (lF) / S

Величину, обратную α, и называют модулем Юнга:

1/α = E

Относительная деформация:

ε = (Δl) / l = α * (F/S)

Отношение растягивающей силы F к S называют упругим напряжением σ:

ε=α σ

Закон Гука, записанный с использованием модуля Юнга, выглядит так:

σ = ε/α = E ε

Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.

В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.

Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l

Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.

Значения модуля юнга для некоторых материалов

В таблице показаны значения E ряда распространенных веществ.

Материалмодуль Юнга E, ГПа
Алюминий70
Бронза75-125
Вольфрам350
Графен1000
Латунь95
Лёд3
Медь110
Свинец18
Серебро80
Серый чугун110
Сталь200/210
Стекло70

Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.

Предел прочности материала

Это предел возникающего напряжения, после которого образец начинает разрушаться.

Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.

Кроме того, существуют пределы прочности на сжатие материала и на растяжение. Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления. В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.

Испытание на растяжение

Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.

Значения σраст в МПа:

Материалы σраст 
Бор57000,083
Графит23900,023
Сапфир14950,030
Стальная проволока4150,01
Стекловолокно3500,034
Конструкционная сталь600,003
Нейлон480,0025

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.

Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Коэффициент запаса прочности

Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным.

Запас прочности

Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.

Связь с другими модулями упругости

Модуль Юнга связан с модулем сдвига, определяющим способность образца к сопротивлению против деформации сдвига, следующим соотношением:

E связан также и с модулем объёмной упругости, определяющим способность образца к сопротивлению против одновременного сжатия со всех сторон.

Источник

.

Здесь Е – постоянная, зависящая только от материала стержня и его физического состояния. Она называется модулем Юнга и выражается формулой

. (3)

Из формулы (3) видно, что модуль Юнга равен такому натяжению, при котором длина стержня удваивается, то есть

.

ОПИСАНИЕ ПРИБОРА

Прибор для изучения упругой деформации стальной проволоки и определения ее модуля Юнга (рис. 2) состоит из штатива, к которому прикреплены два кронштейна А и В. Проволока L, модуль Юнга материала которой необходимо определить, верхним концом прочно укреплена в зажиме кронштейна А. Нижний ее конец закреплен в цилиндре d, к которому подвешен груз Р0 для выпрямления проволоки (при вычислении модуля Юнга его в расчет не принимают). Цилиндр d зафиксирован в рычаге r. Удлинение проволоки измеряется с помощью индикатора часового типа (часового индикатора) ИЧ-10. Часовой индикатор установлен в держателе, закрепленном на кронштейне В, и его щуп опирается на рычаг r. При удлинении проволоки рычаг r опускается и стрелка часового индикатора показывает величину, пропорциональную этому удлинению. Щуп индикатора расположен от центра вращения рычага r на расстоянии а, а от проволоки – на расстоянии в. Для предохранения проволоки от ненужных толчков и разрыва в приборе используется арретир f, который укреплен на кронштейне В. Ввертывая винт С арретира f, можно освободить проволоку от нагрузки. При настольном исполнении прибора использование арретира обязательно!

Грузы, необходимые для растяжения проволоки, хранятся на специальном подвесе кронштейна А. Для растяжения проволоки L грузы поочередно подвешиваются на ось груза Р0. Этим достигается постоянство нагрузки на верхний кронштейн А и тем самым постоянство прогиба последнего.

Нагружение проволоки и снятие нагрузки необходимо всегда проводить очень осторожно или же для предосторожности использовать арретир.

МЕТОДИКА ОПРЕДЕЛЕНИЯ МОДУЛЯ ЮНГА

СТАЛЬНОЙ ПРОВОЛОКИ

Для определения модуля Юнга стальной проволоки необходимо знать результирующую массу установленных для растяжения проволоки грузов и измерить удлинение Dl проволоки при ее растяжении. Удлинение Dl в приборе находят с помощью индикатора часового типа. В начальном состоянии, когда проволока только выпрямлена грузом Р0, необходимо вращением оправы индикатора установить нулевое положение стрелки прибора (N0). После подвешивания к проволоке груза массы m проволока растянется на величину Dl.

Здесь а – расстояние от оси вращения рычага r до щупа микрометра; b – расстояние от щупа микрометра до исследуемой проволоки (а = 104 мм; b = 25 мм). Рычаг r опустится, и стрелка часового индикатора покажет величину перемещения рычага DN в месте нахождения щупа индикатора. На рис. 3 показано взаимное расположение рычага r, часового индикатора ИЧ-10 и цилиндра d с проволокой L. При растяжении проволоки и опускании рычага r величину удлинения проволоки можно найти, рассматривая два подобных треугольника (рис. 4).

. (4)

Подставив выражение (4) для и выразив площадь поперечного сечения проволоки как

Читайте также:  Острое растяжение мышц спины

,

где D – диаметр проволоки, получим окончательную формулу для определения модуля Юнга

, (5)

где F = mg – величина растягивающего груза; m – масса груза; g – ускорение свободного падения g = 9,8 м/с2.

ЗАДАНИЕ НА ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТА

1.  Проведите измерение всех необходимых для расчета по формуле (5) модуля Юнга величин. При этом массу грузов m для создания нагрузки F = mg изменяйте от 100 г до 0,7 кг через 100 г.

РЕКОМЕНДАЦИИ СТУДЕНТАМ ПО ВЫПОЛНЕНИЮ

ЛАБОРАТОРНОЙ РАБОТЫ

Рекомендуем выполнять настройку прибора и измерения в следующей последовательности.

1.  Установите прибор вертикально с помощью регулировочных ножек на основании прибора.

2.  Поместите все семь грузов вверху прибора на специальном держателе.

3.  Опустите винтом С арретир f и установите нулевое положение стрелки микрометра часового типа вращением циферблата прибора (N0 = 0).

4.  Поднимите арретир винтом С и нагрузите проволоку грузом массы m1 = = 100 г. Опустите арретир и отметьте деление шкалы микрометра N1.

5.  Снимите груз m1 и вновь определите нулевую точку по шкале N0. Если нулевая точка не совпадает с нулевым отсчетом, вращением циферблата прибора установите нулевое положение стрелки. Так же поступите при следующих нагрузках.

6.  Нагружайте последовательно проволоку грузами массы m2, m3, …, m7, увеличивая каждый раз на 100 г, и доведите общую массу до 0,7 кг.

7.  Измерьте при опущенном арретире диаметр проволоки в трех различных местах: вверху, посередине, внизу по три раза (в направлениях под 120° друг к другу). Искомое значение диаметра определите как среднее арифметическое из 3 значений.

8.  Измерьте при опущенном арретире f длину проволоки от верхнего закрепления до цилиндра d.

9.  Все данные запишите в таблицу.

№ п/п

F=mq,

H

N0,

мм

N1,

мм

N1-N0,

мм

,

мм

,

мм

,

мм

E,

Н/м2

E из графика, Н/м2

1

2

3

4

5

6

7

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

1.  Рассчитайте по формуле (5) модуль Юнга для каждой нагрузки. Искомое значение получите как среднеарифметическое из полученных 7 значений. Выразите Е в единицах системы СИ.

2.  Рассчитайте абсолютную погрешность DЕ в измеренном модуле Юнга методом расчета погрешностей прямых измерений. Окончательный результат запишите в виде

Е = Е ± DЕ.

3.  Постройте график зависимости удлинения проволоки Dl от натяжения Т.

4.  Определите модуль Юнга стальной проволоки из построенного графика как отношение начальной длины проволоки l0 к угловому коэффициенту Dl0 /Т.

Обсуждение полученных результатов

Обработка полученных результатов позволяет обсудить следующие вопросы:

1.  Выполняется ли закон Гука при растяжении стальной проволоки грузами, используемыми в работе?

2.  Какова величина модуля Юнга стальной проволоки при ее растяжении?

3.  Какова величина погрешности в измерении модуля Юнга предложенным методом? Насколько большая эта величина? Можно ли уменьшить эту погрешность? Как?

4.  В каком из двух случаев погрешность в определении модуля Юнга меньше: а) из графика; б) с использованием формулы (5)?

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ И

ИНДИВИДУАЛЬНОЙ РАБОТЫ

1.  В чем состоит физический смысл модуля Юнга?

2.  В чем состоит отличие деформаций при растяжении и сжатии?

3.  В каком случае точнее выполняется закон Гука: при растяжении или сжатии?

4.  Что называют относительным растяжением? Сжатием?

5.  Как зависит модуль Юнга от формы сечения проволоки?

6.  Сформулируйте закон Гука. В какой части проволоки возникают упругие деформации?

7.  Каким образом модуль Юнга зависит от длины проволоки? Как изменится модуль Юнга, если изменить длину проволоки на четверть, две трети и т. д.?

8.  Как модуль Юнга зависит от площади поперечного сечения проволоки? Что произойдет, если заменить проволоку из данного материала с другим сечением?

9.  Какую роль в предложенном методе измерения играет относительное удлинение проволоки? Как его измеряют?

10.  Объясните, почему при измерении все грузы должны находиться на установке. Почему это важно?

11.  Предложите метод измерения модуля Юнга без использования часового индикатора.

12.  Предложите ряд методов точного измерения изменения длины проволоки и обоснуйте их?

13.  Что называют пределом упругости? Как зависит удлинение проволоки от величины приложенной силы?

14.  Как связаны между собой значение модуля Юнга и коэффициент жесткости проволоки?

15.  Как вычислить работу силы упругости, если известен модуль Юнга?

16.  Как правило, проволока имеет небольшие едва заметные изгибы. Как их величина влияет на измерение модуля Юнга? На точность измерения?

17.  Точность измерения каких величин и почему является определяющей при определении погрешности модуля Юнга?

18.  По литературным данным проанализируйте значения модулей Юнга различных материалов и сделайте вывод о роли новых материалов в науке и технике.

19.  Какой метод определения погрешности измерения модуля Юнга является более точным и почему?

20.  Каким образом можно убедиться, что в данной работе выполняется закон Гука? Ответ обосновать.

21.  Почему длину проволоки измеряют достаточно грубо по сравнению с размером проволоки?

22.  Можно ли для растяжения проволоки брать грузы любого веса? Как выбрать наибольший вес?

23.  Если к проволоке приложена сила F, то какова будет величина силы натяжения проволоки в ее различных местах? Как влияет масса проволоки на проведение измерений?

24.  По литературным данным опишите несколько немеханических способов измерения модуля Юнга. В чем их преимущества?

25.  Что называют пределом текучести материала? Остаточной деформацией? Как определяют эти величины? Можно ли использовать данный метод?

Источник