Кручение с изгибом растяжение и сжатие

Кручение с изгибом растяжение и сжатие thumbnail

Сложное сопротивление – одновременное действие на брус нескольких простых видов деформаций: растяжения-сжатия, сдвига, кручения и изгиба. Например, совместное действие растяжения и кручения.

Косой изгиб.

Косой изгиб – это изгиб, при котором плоскость действия изгибающего момента не совпадает ни с одной из главных плоскостей инерции сечения бруса.

В общем случае при косом изгибе в поперечных сечениях возникают четыре внутренних силовых фактора: поперечные силы Qx, Qy и изгибающие моменты Mx , My. Таким образом, косой изгиб можно рассматривать как сочетание двух плоских поперечных изгибов во взаимно перпендикулярных плоскостях. Влиянием поперечных сил на прочность и жесткость бруса обычно пренебрегают.

Косой изгиб

Нейтральная линия при косом изгибе всегда проходит через центр тяжести сечения.

Условие прочности при косом изгибе:

условие прочности при косом изгибе

где ymax, xmax — координаты точки сечения, наиболее удаленной от нейтральной оси.

Для сечений, имеющих две оси симметрии, максимальные напряжения будут в угловых точках, а условие прочности:

условие прочности для сечений имеющих две оси симметрии

где Wx , Wy – осевые моменты сопротивления сечения относительно соответствующих осей.

Если материал бруса не одинаково работает на растяжение и на сжатие, то проверку его прочности выполняют по допускаемым и растягивающим и сжимающим напряжениям.

Прогибы при косом изгибе определяют, используя принцип независимости действия сил, геометрическим суммированием прогибов вдоль направления главных осей:

прогиб при косом изгибе

Изгиб с растяжением (сжатием).

При таком виде сложного сопротивления внутренние силовые факторы приводятся к одновременному действию продольной силы N и изгибающего момента M.

Рассмотрим случай центрального растяжения бруса в сочетании с косым изгибом. На консольный брус действует сила F, составляющая некоторый угол с продольной осью бруса и не лежащая ни в одной из главных плоскостей сечения. Сила приложена в центре тяжести торцевого сечения бруса:

изгиб с растяжением

К расчёту на прочность бруса при изгибе с растяжением:

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Разложим силу F на три составляющие. Тогда внутренние силовые факторы приобретут следующий вид:

внутренние силовые факторы при изгибе с растяжением

Напряжение в произвольно выбранной точке Д, имеющей координаты (хд, уд), пренебрегая действием поперечных сил, будут определяться по формуле:

Напряжение в произвольно выбранной точке при изгибе с растяжением

где А — площадь поперечного сечения.

Если сечение имеет две оси симметрии (двутавр, прямоугольник, круг), наибольшее напряжение определяют по формуле:

Условие прочночти при изгибе с растяжением

Условие прочночти имеет вид:

Косой изгиб

Также как и в случае косого изгиба, если материал бруса не одинаково работает на растяжение и на сжатие, то проверку прочности проводят по допускаемым растягивающим и сжимающим напряжениям.

Внецентренное растяжение или сжатие.

При таком виде сложного сопротивления продольная сила приложена не в центре тяжести поперечного сечения бруса.

внецентренное растяжение или сжатие

К расчёту на прочность бруса при внецентренном растяжении

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Приведём силу F к центру тяжести:

приведение силы к центру тяжести

где уF , xF — координаты точки приложения силы F.

В произвольной точке Д, с координатами (хд, уд), нормальное напряжение определяется по фомуле:

нормальное напряжение при внецентренном растяжение или сжатие

Условие прочности для бруса, изготовленного из материала, одинаково сопротивляющегося растяжению и сжатию, имеет вид:

Условие прочности для бруса при внецентренном растяжение или сжатие

Для бруса, который неодинаково работает на растяжение и на сжатие проверка прочности по допускаемым растягивающим и сжимающим напряжениям.

Кручение с изгибом.

Сочетание деформаций изгиба и кручения характерно для работы валов машин.

Кручение с изгибом

Напряжения в сечениях вала возникают от кручения и от изгиба. При изгибе появляются нормальные и касательные напряжения:

Напряжения в сечениях вала от кручения и от изгиба

Эпюры напряжений в сечении бруса при кручении с изгибом

Нормальное напряжение достигает максимума на поверхности:

Нормальное напряжение при кручении с изгибом

Касательное напряжение от крутящего момента Mz достигает максимума также на поверхности вала:

Касательное напряжение от крутящего момента

Из третьей и четвёртой теории прочности:

эквивалентный крутящий момент

При кручении с изгибом условие прочности имеет вид:

условие прочности при кручении с изгибом

Источник

Сочетание деформаций изгиба и кручения испытывает большинство валов, которые обычно представляют собой прямые брусья круглого или кольцевого сечения.

При расчете валов мы будем учитывать только крутящий или изгибающий моменты, действующие в опасном поперечном сечении, и не будем принимать во внимание поперечные силы, так как соответствующие им касательные напряжения относительно невелики.

Максимальные нормальные и касательные напряжения у круглых валов вычисляют по формулам, причем для

круглых валов Wp = 2 W.
Кручение с изгибом растяжение и сжатие

При сочетании изгиба и кручения опасными будут точки поперечного сечения вала, наиболее удаленные от нейтральной оси.

Применив третью теорию прочности, получим
Кручение с изгибом растяжение и сжатие

Выражение, стоящее в числителе, назовем эквивалентным моментом и обозначим через Мэкв. Тогда расчетная формула для круглых валов принимает вид аэкв = Мэкв/W [а] (валы обычно изготовляют из материала, у которого [crp J = [сгс ] = [а]).

По этой формуле расчет круглых валов ведут так же, как при расчете на изгиб, но не по изгибающему, а по эквивалентному моменту. Применив энергетическую теорию прочности, получим

Кручение с изгибом растяжение и сжатие

и тогда
Кручение с изгибом растяжение и сжатие

Для расчетов деталей на сочетание деформаций поперечного изгиба и кручения необходимо, как правило, составить расчетную схему конструкции и построить эпюры изгибающих и крутящих моментов, определить предположительно опасные сечения, после чего, применив одну из теорий прочности, произвести необходимые расчеты.

Читайте также:  Алгоритм оказания первой медицинской помощи при растяжении

На рис. 7.6 в прямоугольных проекциях представлены: ведущий вал цилиндрической прямозубой передачи, расчетная схема вала и эпюры крутящего и изгибающих моментов в вертикальной и горизонтальной плоскостях. Эпюры построены на основании следующих данных:

передаваемая мощность Р = 40 кВт;

частота вращения вала п = 1000 об/мин;

диаметр делительной окружности зубчатого колеса D = 300 мм;

расстояние между опорами вала / = 400 мм;

радиальная нагрузка на зуб колеса Ту = 0,36 F„ где /у окружная сила на колесе.

Проведем проверку прочности вала, изображенного на рис. 7.6, если дано: диаметр вала в опасном сечении d = 35 мм; допускаемое напряжение для вала [стр] = 70 МПа.

Прежде всего определим вращающий момент Т

Кручение с изгибом растяжение и сжатие

Далее определим окружное и радиальное усилия F, и /у:

Кручение с изгибом растяжение и сжатие

По этим данным строим эпюры Мк и Ми. Из эпюр видно, что опасное сечение расположено в месте закрепления зубчатого колеса.

Кручение с изгибом растяжение и сжатие

Рис. 7.6

Применим третью теорию прочности:
Кручение с изгибом растяжение и сжатие учитывая, что
Кручение с изгибом растяжение и сжатие

Взяв значения моментов из эпюр на рис. 7.6, получим

Кручение с изгибом растяжение и сжатие

Следовательно, прочность вала недостаточна, поэтому нужно увеличить диаметр вала примерно в два раза.

На рис. 7.7 в аксонометрической проекции представлены трансмиссионный вал ременной передачи, расчетная схема вала и эпюры крутящего и изгибающих моментов в вертикальной и горизонтальной плоскостях. Данные для расчетов на изгиб и кручение приведены на рисунке.

Кручение с изгибом растяжение и сжатие

Рис. 7.7

Сочетание деформаций кручения и растяжения испытывают, например, болты и крепежные винты, а сочетание деформаций кручения и сжатия — винты домкратов и винтовых прессов, сверла и шпиндели сверлильных станков. Эти детали обычно изготовляют из материалов, у которых [ар] = [стс] = [ст].

Нормальные и максимальные касательные напряжения в этих случаях вычисляют по формулам

Кручение с изгибом растяжение и сжатие

Применив третью теорию прочности, получим расчетную формулу

Кручение с изгибом растяжение и сжатие

Применив энергетическую теорию прочности, получим
Кручение с изгибом растяжение и сжатие

Источник

Не вдаваясь в теоретические основы физики процессом деформации твердого тела можно назвать изменение его формы под действием внешней нагрузки. Любой твердый материал имеет кристаллическую структуру с определенным расположением атомов и частиц, в ходе приложения нагрузки происходит смещение отдельных элементов или целых слоев относительно, другими словами возникают дефекты материалов.

Виды деформации твердых тел

Деформация растяжения

Деформация растяжения — вид деформации, при которой нагрузка прикладывается продольно от тела, то есть соосно или параллельно точкам крепления тела. Проще всего растяжение рассмотреть на буксировочном тросе для автомобилей. Трос имеет две точки крепления к буксиру и буксируемому объекту, по мере начала движения трос выпрямляется и начинает тянуть буксируемый объект. В натянутом состоянии трос подвергается деформации растяжения, если нагрузка меньше предельных значений, которые может он выдержать, то после снятия нагрузки трос восстановит свою форму.

Схема деформация растяжения
Схема растяжения образца

Посмотрите прибор измеряющий деформацию растяжения

Деформация растяжения является одним из основных лабораторных исследований физических свойств материалов. В ходе приложения растягивающих напряжений определяются величины, при которых материал способен:

  1. воспринимать нагрузки с дальнейшим восстановлением первоначального состояния (упругая деформация)
  2. воспринимать нагрузки без восстановления первоначального состояния (пластическая деформация)
  3. разрушаться на пределе прочности

Данные испытания являются главными для всех тросов и веревок, которые используются для строповки, крепления грузов, альпинизма. Растяжение имеет значение также при строительстве сложных подвесных систем со свободными рабочими элементами.

Деформация сжатия

Деформация сжатия — вид деформации, аналогичный растяжению, с одним отличием в способе приложения нагрузки, ее прикладывают соосно, но по направлению к телу. Сдавливание объекта с двух сторон приводит к уменьшению его длины и одновременному упрочнению, приложение больших нагрузок образовывает в теле материала утолщения типа «бочка».

Схема деформация сжатия
Схема сжатия образца

В качестве примера можно привести тот же прибор что и в деформации растяжения немного выше.

Деформация сжатия широко используется в металлургических процессах ковки металла, в ходе процесса металл получает повышенную прочность и заваривает дефекты структуры. Сжатие также важно при строительстве зданий, все элементы конструкции фундамента, свай и стен испытывают давящие нагрузки. Правильный расчет несущих конструкций здания позволяет сократить расход материалов без потери прочности.

Деформация сдвига

Деформация сдвига — вид деформации, при котором нагрузка прикладывается параллельно основанию тела. В ходе деформации сдвига одна плоскость тела смещается в пространстве относительно другой. На предельные нагрузки сдвига испытываются все крепежные элементы — болты, шурупы, гвозди. Простейший пример деформации сдвига – расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки – сидение.

Схема деформации сдвига
Схема сдвига образца

Посмотрите прибор измеряющий деформацию сдвига

Деформация изгиба

Деформация изгиба — вид деформации, при котором нарушается прямолинейность главной оси тела. Деформации изгиба испытывают все тела подвешенные на одной или нескольких опорах. Каждый материал способен воспринимать определенный уровень нагрузки, твердые тела в большинстве случаев способны выдерживать не только свой вес, но и заданную нагрузку. В зависимости от способа приложения нагрузки при изгибе различают чистый и косой изгиб.

Читайте также:  Воротник для шеи при растяжении

Схема деформации изгиба
Схема изгиба образца

Посмотрите прибор измеряющий деформацию изгиба

Значение деформации изгиба важно для проектирования упругих тел, таких, как мост с опорами, гимнастический брус, турник, ось автомобиля и другие.

Деформация кручения

Деформация кручения – вид деформации, при котором к телу приложен крутящий момент, вызванный парой сил, действующих в перпендикулярной плоскости оси тела. На кручение работают валы машин, шнеки буровых установок и пружины.

Схема деформации кручения
Схема кручения образца

Посмотрите прибор измеряющий деформацию кручения

Пластическая и упругая деформация

В процессе деформации важное значение имеет величина межатомных связей, приложение нагрузки достаточной для их разыва приводит к необратимым последствиям (необратимая или пластическая деформация). Если нагрузка не превысила допустимых значений, то тело может вернуться в исходное состояние (упругая деформация). Простейший пример поведения предметов, подверженных пластической и упругой деформацией, можно проследить на падении с высоты резинового мяча и куска пластилина. Резиновый мяч обладает упругостью, поэтому при падении он сожмется, а после превращения энергии движения в тепловую и потенциальную, снова примет первоначальную форму. Пластилин обладает большой пластичностью, поэтому при ударе о поверхность оно необратимо утратит свою первоначальную форму.

За счет наличия деформационных способностей все известные материалы обладают набором полезных свойств – пластичностью, хрупкостью, упругостью, прочностью и другими. Исследование этих свойств достаточно важная задача, позволяющая выбрать или изготовить необходимый материал. Кроме того, само по себе наличие деформации и его детектирование часто бывает необходимо для задач приборостроения, для этого применяются специальные датчики называемые экстензометрами или по другому тензометрами.

Если вам понравилась статья нажмите на одну из кнопок ниже

Источник

Сопротивление материалов

Применение теорий прочности для расчетов



Изгиб и кручение

Сочетание деформаций изгиба и кручения испытывает большинство валов, которые обычно представляют собой прямые брусья круглого или кольцевого сечения.

При расчете валов мы будем учитывать только крутящий или изгибающий моменты, действующие в опасном поперечном сечении, и не будем принимать во внимание поперечные силы, так как соответствующие им касательные напряжения относительно невелики.

Максимальные нормальные и касательные напряжения у круглых валов вычисляют по формулам:

σ = Ми / W,       τ = Мк / Wр,

причем для круглых валов Wр = 2W.

При сочетании изгиба и кручения опасными будут точки опасного поперечного сечения вала, наиболее удаленные от нейтральной оси.

Применив третью теорию прочности, получим:

σэкв =√(σ2 + 4τ2) = √[(Ми/W)2 + 4(Мк/Wр)2] = √[(Ми/W)2 + 4(Ми/2Wр)2] = √(Ми2 + Мк2) / W.

Выражение, стоящее в числителе, называют эквивалентным моментом:

Мэкв = √(Ми2 + Мк2),

Тогда расчетная формула для круглых валов примет вид:

σэкв = Мэкв / W ≤ [σ]

(валы обычно изготовляют из материала, у которого [σр] = [σс] = [σ]).

По этой формуле расчет круглых валов ведут, как на изгиб, но не по изгибающему, а по эквивалентному моменту. Применив энергетическую теорию прочности, получим:

σэкв =√(σ2 + 4τ2) = √[(Ми/W)2 + 3(Мк/Wр)2] = √[(Мк/W)2 + 3(Мк/2W)2] = √(Ми2 + 0,75 Мк2)/W,

т. е. по энергетической теории прочности:

Мэкв = √(Ми2 + 0,75 Мк2).

Для расчетов деталей на сочетание деформаций поперечного изгиба и кручения необходимо, как правило, составить расчетную схему конструкции и построить эпюры изгибающих и крутящих моментов, определить предположительно опасные сечения, после чего, применив одну из теорий прочности, произвести необходимые расчеты.

***



На рисунке ниже представлен пример расчета трансмиссионного вала, подверженного деформациям изгиба и кручения, на прочность. На основе чертежа вала в аксонометрической проекции составлена его расчетная схема и построены эпюры изгибающих и крутящих моментов.

Расчет производят в следующей последовательности:

  • По эпюрам моментов определяют наиболее опасные сечения вала;
  • Подсчитывают значения моментов в этих сечениях и, применяя одну из теорий прочности, рассчитывают эквивалентные напряжения;
  • В соответствии с условием прочности, оценивают работоспособность вала при данных нагрузках.

сочетание деформации изгиба и кручения

***

Кручение и растяжение или сжатие

Сочетание деформаций кручения и растяжения испытывают, например, болты и крепежные винты, а сочетание деформаций кручения и сжатия — винты домкратов и винтовых прессов, сверла и шпиндели сверлильных станков. Эти детали обычно изготовляют из материалов, у которых [σр] = [σс] = [σ].

Нормальные и максимальные касательные напряжения в этих случаях определяют по формулам:

σ = N / A;       τ = Мк / Wр.

Применив третью теорию прочности, получим расчетную формулу:

σэкв = √[(N / A)2 + 4(Мк / Wр)2] ≤ [σ].

Применив энергетическую теорию прочности, получим:

σэкв = √[(N / A)2 + 3(Мк / Wр)2] ≤ [σ].

***

Динамические нагрузки



Источник

В инженерной практике часто имеют место случаи одновременного действия на стержень поперечных и продольных нагрузок, причем последние могут быть приложены внецентренно. Такой случай показан на рис. 11.26. При этом внутренние усилия в заделке равны:

Кручение с изгибом растяжение и сжатиеКручение с изгибом растяжение и сжатие

Рис. 11.26

Кручение с изгибом растяжение и сжатие

Рис. 11.27

В общем случае растяжения или сжатия с изгибом внутренние усилия определяются раздельно от действия всех составляющих нагрузок. Нормальные напряжения в поперечных сечениях определяются по общей формуле

Читайте также:  Сильнодействующее обезболивающее при растяжении

Кручение с изгибом растяжение и сжатие

Приравняв это выражение нулю, получим уравнение нулевой линии

Кручение с изгибом растяжение и сжатие

Положив в этом уравнении последовательно у = 0 и z = О, получим формулы для определения отрезков, отсекаемых нулевой линией на осях координат:

Кручение с изгибом растяжение и сжатие

Как и во всех рассмотренных выше случаях сложного сопротивления, наибольшие растягивающие и сжимающие напряжения действуют в точках сечения, наиболее удаленных от нулевой линии. Для сечений типа прямоугольника и двутавра это противоположные угловые точки сечения. Значения наибольших и наименьших напряжений в угловых точках можно определить по формулам:

Кручение с изгибом растяжение и сжатие

где величины изгибающих моментов Mz и Му надо взять по абсолютной величине.

Напомним, что во всех предыдущих решениях использовался принцип независимости действия сил, позволяющий определять внутренние усилия для недеформированного состояния стержня. Строго говоря, это возможно только при малых деформациях. В противном случае принцип независимости действия сил использовать нельзя.

Рассмотрим, например, консольный стержень в условиях сжатия с изгибом (рис. 11.27). Если стержень обладает значительной гибкостью и прогибы от поперечной нагрузки достаточно велики, то сила Р вызывает дополнительный изгиб, а изгибающий момент в заделке от ее действия равен М = PvB. Для негибких стержней этот момент незначителен и его можно не учитывать. Для гибких стержней необходимо проводить расчет по так называемой деформированной схеме с учетом влияния продольных сил на изгиб. Подобные задачи будут рассмотрены в гл. 13.

Пример 11.7. Для короткого консольного деревянного стержня круглого сечения, находящегося в условиях центрального сжатия и изгиба в плоскости Oxz (рис. 11.28), построим эпюру о в опасном сечении.

Кручение с изгибом растяжение и сжатие

Рис. 11.28

Определяем геометрические характеристики сечения:

Кручение с изгибом растяжение и сжатие

Строим эпюры внутренних усилий N и Му (рис. 11.28, а). Изгибающий момент Му вызывает растяжение волокон левой половины стержня и имеет наибольшее значение в заделке: Му = — 4 • 1,2 • 0,6 = —2,88 кНм. Изгибающий момент Mz равен нулю. Определяем значения наибольших нормальных напряжений в точках А и В в сечении вблизи заделки:

Кручение с изгибом растяжение и сжатие

Напряжения во всех точках сечения стержня являются сжимающими. Эпюры о в опасном сечении от действия N и М и суммарная эпюра с приведены на рис. 11.28, б.

Пример 11.8. Для стального стержня, состоящего из двух неравнобоких уголков L 160x100x10, находящегося в условиях центрального растяжения и изгиба в плоскости Оху (рис. 11.29, а), определим расчетное значение силы Р из условия прочности и построим эпюру о в опасном сечении. Совместная работа уголков обеспечена соединениями, показанными пунктиром. В расчетах примем R= 210 МПа = 21 кН/см2, ус = 0,9.

Кручение с изгибом растяжение и сжатие

Рис. 11.29

Определяем геометрические характеристики сечения:

Кручение с изгибом растяжение и сжатие

Строим эпюры N w Mz (рис. 11.29, а). Опасным является сечение в середине стержня, где Mz имеет наибольшее значение. В нижних волокнах стержня нормальные напряжения от действия N и Mz имеют одинаковый знак и являются растягивающими. Из условия прочности по наибольшим растягивающим напряжениям в точке А

Кручение с изгибом растяжение и сжатие

находим Р 29,4 кН. При действии силы Р = 29,4 кН напряжения в точках А и В равны:

Кручение с изгибом растяжение и сжатие

Эпюры о в опасном сечении от действия N w Mzw суммарная эпюра а приведены на рис. 11.29, б.

Пример 11.9. Для стального консольного стержня составного сечения, находящегося в условиях внецентренного растяжения и изгиба (рис. 11.30, а), выполним проверку прочности и построим эпюру а в опасном сечении. В расчетах примем /? = 210 МПа, ус — 0,9.

Построим эпюры N, Mz, Му. Изгибающий момент Mz вызывает растяжение верхних волокон стержня и в заделке равен Mz = —10 • 3,6 — 15 • 1,8 = —63 кНм, а момент М вызывает растяжение волокон левой части сечения (при взгляде от положительного направления оси Ох) и имеет постоянное значение Му = —300 • 0,0625 = —18,75 кНм. Продольная сила является растягивающей и также имеет постоянное значение N = 300 кН.

Наибольшие нормальные напряжения действуют в сечении вблизи заделки (опасное сечение).

Кручение с изгибом растяжение и сжатие

Рис. 11.30

Определяем геометрические характеристики сечения. Учитывая, что для двутавра 124 Fx = 34,8 см2, J = 3460 см4, Jy = = 198 см4, b = 11,5 см, И = 24 см, находим:

Кручение с изгибом растяжение и сжатие

Наибольшие напряжения действуют в противоположных угловых точках опасного сечения. Определяем по формулам (11.17) отрезки, отсекаемые нулевой линией на осях координат. Учитывая, что в первой четверти сечения моменты Mz и Му вызывают сжатие и имеют отрицательный знак, находим:

Кручение с изгибом растяжение и сжатие

Отложив у0 и Zq на осях координат, проводим нулевую линию. На прямой, перпендикулярной нулевой линии, строим эпюру о (рис. 11.30, б), которая является разнозначной. Наибольшие растягивающие напряжения возникают в точке Л . Напряжения в точках Л и В равны:

Кручение с изгибом растяжение и сжатие

Поскольку оА = 123,7 МПа ycR = 189 МПа, прочность стержня обеспечена. Эпюра с в опасном сечении приведена на рис. 11.30, б.

Источник