Кривая деформации при растяжении

Кривая деформации при растяжении thumbnail

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]

Диаграмма растяжения

Рис. 1 Диаграмма растяжения стального образца

Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.

Построение диаграммы

Рассмотрим подробнее процесс построения диаграммы.

В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).

На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.

После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.

В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.

После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).

Стальной образец с образовавшейся "шейкой"

Рис. 2 Стальной образец с «шейкой»

Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».

В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»

Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:

W=0,8Fmax∙Δlmax

По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.

Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.

Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >

Источник

Машина для испытаний на растяжение с электромеханическим приводом

Статическое растяжение — одно из наиболее распространённых видов испытаний для определения механических свойств материалов.

Основные характеристики, определяемые при испытании[править | править код]

При статическом растяжении, как правило, определяются следующие характеристики материала.

  • Характеристики прочности:
    • предел пропорциональности,
    • предел текучести,
    • предел прочности (временное сопротивление разрушению),
    • истинное сопротивление разрыву.
  • Характеристики пластичности:
    • относительное остаточное удлинение,
    • относительное остаточное сужение.
  • Характеристики упругости:
    • модуль упругости (модуль Юнга).
  • Прочие характеристики:
    • коэффициент механической анизотропии
    • коэффициент (модуль) упрочнения

Основные типы материалов[править | править код]

Принято разделять пластичные и хрупкие материалы. Основное отличие состоит в том, что первые деформируются в процессе испытаний с образованием пластических деформаций, а вторые практически без них вплоть до своего разрушения. За критерий для условной классификации материалов можно принять относительное остаточное удлинение δ = (lк − l0)/l0, где l0 и lк — начальная и конечная длина рабочей части образца), обычно вычисляемое в процентах. В соответствии с величиной остаточного удлинения материалы можно разделить на:

  • пластичные (δ ≥ 10 %);
  • малопластичные (5 % < δ < 10 %);
  • хрупкие (δ ≤ 5 %).

Существующие материалы могут быть изотропными или анизотропными. В последнем случае из-за различия характеристик в различных направлениях необходимо произвести не одно, а несколько испытаний.

Образцы для испытаний на статическое растяжение[править | править код]

Цилиндрический пятикратный образец

Цилиндрический пятикратный образец после разрушения

Для испытаний на статическое растяжение используют образцы как с круглым, так и с прямоугольным сечением. Предъявляются повышенные требования к изготовлению образцов, как с точки зрения геометрии, так и с точки зрения обработки резанием. Требуется высокая однородность диаметра образца по его длине, соосность и высокое качество поверхности (малая шероховатость, отсутствие царапин и надрезов). При изготовлении образцов следует избегать перегрева материала и изменений его микроструктуры.

Образцы круглого сечения, как правило, имеют рабочую длину, равную четырём или пяти диаметрам — т. н. короткие образцы или десяти диаметрам — т. н. нормальные образцы. Перед началом испытания замеряется диаметр образца (обычно 6, 10 или 20 мм) для вычисления напряжения σ и для расчёта относительного остаточного сужения после разрушения образца. В случае использования экстензометра, длина рабочей части образца не замеряется, а деформация ε и относительное удлинение при разрушении регистрируются автоматически с помощью компьютера или измеряются по диаграмме σ — ε. При отсутствии экстензометра (не рекомендуется стандартом), отмечается рабочая длина образца, деформация ε рассчитывается по перемещениям конца образца (захвата), а относительное удлинение при разрушении рассчитывается путём замера разрушенного образца.

Читайте также:  Растяжение колена через сколько пройдет

Диаграмма растяжения пластичного материала[править | править код]

Рис. 1. Типичная диаграмма σ — ε для малоуглеродистой стали
1. Предел прочности (временное сопротивление разрушению)
2. Предел текучести (верхний)
3. Точка разрушения
4. Область деформационного упрочнения
5. Образование шейки на образце

Рис. 2. Типичная диаграмма σ — ε для алюминиевых сплавов
1. Предел прочности (временное сопротивление разрушению)
2. Условный предел текучести (σ0.2)
3. Предел пропорциональности
4. Точка разрушения
5. Деформация при условном пределе текучести (обычно, 0,2 %)

Микроструктура доэвтектоидной стали (0,7 % углерода)

Обычно диаграмма растяжения является зависимостью приложенной нагрузки P от абсолютного удлинения Δl. Современные машины для механических испытаний позволяют записывать диаграмму в величинах напряжения σ (σ = P/A0, где A0 — исходная площадь поперечного сечения) и линейной деформации ε (ε = Δl/l0 ). Такая диаграмма носит название диаграммы условных напряжений, так как при этом не учитывается изменение площади поперечного сечения образца в процессе испытания.

Начальный участок является линейным (т. н. участок упругой деформации). На нём действует закон Гука:

Затем начинается область пластической деформации. Эта деформация остаётся и после снятия приложенной нагрузки. Переход в пластическую область обнаруживается не только по проявлению остаточных деформаций, но и по уменьшению наклона кривой с увеличением степени деформации. Данный участок диаграммы обычно называют площадкой (зоной) общей текучести, так как пластические деформации образуются по всей рабочей длине образца. С целью изучения и точного анализа диаграммы деформации, современные испытательные машины оснащены компьютеризированной записью результатов.

По наклону начального участка диаграммы рассчитывается модуль Юнга. Для малоуглеродистой стали наблюдается т. н. «зуб текучести» и затем площадка предела текучести. Явление «зуба» текучести связано с дислокационным механизмом деформации. На начальном участке плотность дислокаций является недостаточной для обеспечения более высокой степени деформации. После достижения точки верхнего предела текучести начинается интенсивное образование новых дислокаций, что приводит к падению напряжения. Дальнейшая деформация при пределе текучести происходит без роста напряжения . Зависимость предела текучести, от размера зерна, d, выражена соотношением Холла-Петча:

После достижения конца площадки текучести (деформация порядка 2 — 2,5 %) начинается деформационное упрочнение (участок упрочнения), видимое на диаграмме, как рост напряжения с ростом деформации. В этой области до достижения максимальной нагрузки (напряжения (σВ) макродеформация остаётся равномерной по длине испытуемого образца. После достижения точки предела прочности начинает образовываться т. н. «шейка» — область сосредоточенной деформации. Расположение «шейки» зависит от однородности геометрических размеров образца и качества его поверхности. Как правило, «шейка» и, в конечном счёте, место разрушения расположено в наиболее слабом сечении. Кроме того, важное значение имеет одноосность напряжённого состояния (отсутствие перекосов образца в испытательной машине). Для пластичных материалов при испытании на статическое растяжение одноосное напряжённое состояние сохраняется лишь до образования т. н. «шейки» (до достижения максимальной нагрузки и начала сосредоточенной деформации).

Вид диаграммы деформации, приведённый на рис. 1 является типичным для О.Ц.К. материалов с низкой исходной плотностью дислокаций.

Для многих материалов, например, с Г. Ц. К. кристаллической решёткой, а также для материалов с высокой исходной плотностью дефектов, диаграмма имеет вид, показанный на рис. 2. Основное отличие — отсутствие явно выраженного предела текучести. В качестве предела текучести выбирается значение напряжения при остаточной деформации 0,2 % (σ0.2).

После достижения максимума нагрузки происходит падение нагрузки (и, соответственно, напряжения σ) за счёт локального уменьшения площади поперечного сечения образца. Соответствующий (последний) участок диаграммы называют зоной местной текучести, так как пластические деформации продолжают интенсивно развиваться только в области шейки.

Иногда используется диаграмма истинных напряжений, S — e (истинное напряжение S = P/A, где A — текущая площадь поперечного сечения образца; истинная деформация e = ln(l+Δl/l), где l — текущая длина образца). В этом случае, после достижения максимальной нагрузки не происходит падения напряжения, истинное напряжение растёт за счёт локального уменьшения сечения в «шейке» образца. Поэтому различие между диаграммами истинных и условных напряжений наблюдается только после предела прочности — до точки 1 они практически совпадают друг с другом.

Образцы из пластичного материала разрушаются по поперечному сечению с уменьшением диаметра в месте разрыва из-за образования «шейки».

Диаграмма растяжения хрупкого материала[править | править код]

Диаграмма растяжения и диаграмма условных напряжений хрупких материалов по виду напоминает диаграмму, показанную на рис. 2 за тем исключением, что не наблюдается снижения нагрузки (напряжения) вплоть до точки разрушения. Кроме того, данные материалы не получают таких больших удлинений как пластичные и по времени разрушаются гораздо быстрее. На диаграмме хрупких материалов уже на первом участке имеется ощутимое отклонение от прямолинейной зависимости между нагрузкой и удлинением (напряжением и деформацией), так что о соблюдении закона Гука можно говорить достаточно условно. Так как пластических деформаций хрупкий материал не получает, то в ходе испытания не определяют предела текучести. Не имеет особенного смысла также рассчитывать и относительное сужение образца, так как шейка не образуется и диаметр после разрыва практически не отличается от исходного.

Влияние скорости деформации и температуры на прочностные характеристики[править | править код]

Стандарты на проведение испытаний на статическое растяжение, как правило, ограничивают скорость деформации или скорость приложения нагрузки. Так, стандарт ASTM E-8 ограничивает скорость деформации величиной 0,03 — 0,07 мм/мин. Такое ограничение вызвано искажением результатов за счёт повышения прочности металлов с ростом скорости деформации (при постоянной температуре). При скоростях деформации до 1 сек скорость деформации практически не влияет на прочностные характеристики (в частности, на предел текучести) (источник???).

Читайте также:  Можно заниматься если растяжение

В общем виде можно выразить формулу влияния скорости деформации на предел текучести в виде:

где  — скорость деформации;  — астотный фактор,  — активационный объём;  — напряжение течения;  — экстраполяция напряжения течения на нулевую скорость деформации.

Эта же зависимость даёт и зависимость напряжения течения от температуры. В области низких температур и при отсутствии фазовых превращений прочность кристаллических материалов повышается. Вклад в повышение прочности даёт и переход от термически активируемого процесса деформации за счёт движения дислокаций к механизму деформации путём двойникования.

Стандарты на проведение испытаний[править | править код]

  • ГОСТ 6996-66
  • ГОСТ 1497-84 Металлы. Методы испытаний на растяжение
  • ГОСТ 11262-80 (СТ СЭВ 1199-78) Пластмассы. Метод испытания на растяжение
  • ASTM E-8 и ASTM E-8M

Литература[править | править код]

  • Я. Б. Фридман. Механические свойства металлов. 3-е изд. В 2-х ч. М.: Машиностроение, 1974
  • М. Л. Бернштейн, В.А Займовский. Механические свойства металлов. 2-е изд. М.: Металлургия, 1979.
  • А. Н. Васютин, А. С. Ключ. Влияние температуры и скорости деформации на сопротивление деформированию малоуглеродистых и низколегированных сталей. Заводская лаборатория, 1985, № 4.

См. также[править | править код]

  • Растяжение-сжатие

Источник

Графическое изображение зависимости между напряжениями (или нагрузками) и деформациями материала (или перемещениями при деформировании) представляет собой диаграмму деформирования.

Испытательные машины имеют специальные приспособления, которые автоматически фиксируют диаграмму растяжения. На диаграмме по оси ординат откладываются действующие осевые нагрузки, а по оси абсцисс — абсолютные деформации.

На рис. 2.2 даны типичные диаграммы растяжения различных металлов. Диаграмма с постепенным переходом из упругой в пластическую область (рис. 2.2, а) свойственна большинству металлов в пластичном состоянии (легированные стали, медь, бронза).

Диаграммы растяжения

Рис. 2.2. Диаграммы растяжения:

а — для большинства металлов в пластичном состоянии с постепенным переходом из упругой в пластическую область; б — для некоторых металлов в пластичном состоянии со скачкообразным переходом в пластическую область; в — для хрупких металлов

Пластичные материалы разрушаются при больших остаточных деформациях (больших остаточных удлинениях, измеряемых после разрыва).

Диаграмма со скачкообразным переходом в пластическую область в виде четко обозначенной «площадки» текучести (рис. 2.2, б) свойственна некоторым металлам. К таким металлам можно отнести мягкую углеродистую сталь, а также некоторые отожженные марганцовистые и алюминиевые бронзы.

Хрупкие материалы разрушаются при малых остаточных деформациях. К хрупким материалам можно отнести закаленную и неотпущенную сталь, серый чугун.

Характерные участки и точки диаграммы растяжения показаны на рис. 2.3. По оси абсцисс откладывают абсолютные удлинения А/ образца, а по оси ординат — значения растягивающей силы Р. Сначала получим на первом участке диаграммы 0—1 прямолинейную зависимость между силой и удлинением, что отражает закон Гука. При дальнейшем увеличении силы (за точкой 1) прямолинейная зависимость между Р и А/ нарушается. Точка 1 соответствует пределу пропорциональности, т. е. наибольшему напряжению, при котором еще соблюдается закон Гука. Если нагрузку, соответствующую точке 1, обозначить ,Pnu, а начальную площадь сечения образца Fq, то предел пропорциональности
Характерные участки и точки диаграммы растяжения

Кривая деформации при растяжении

Рис. 2.3. Характерные участки и точки диаграммы растяжения

Несколько выше точки 1 находится точка Г, соответствующая пределу упругости. Если нагрузку, соответствующую точке Г, обозначить через Руп, то предел упругости

Кривая деформации при растяжении

По ГОСТу предел упругости задается и обозначается ag os — напряжение, при котором остаточное удлинение достигает 0,05 % длины участка образца, равного базе тензометра.

За точкой Г возникают уже заметные остаточные деформации. В точке 2 диаграммы частицы материала начинают переходить и область пластичности — наступает явление текучести образца.

На диаграмме растяжения получается горизонтальный участок 2—3 (площадка текучести), параллельный оси абсцисс. Для участка 2—3 характерен рост деформации без заметного увеличения нагрузки. Обозначим величину нагрузки, соответствующей площадке текучести 2—3, через Рт. Напряжение ат, отвечающее этой нагрузке, это то напряжение, при котором рост деформации происходит без заметного увеличения нагрузки, оно и является физическим пределом текучести.

Предел текучести (физический) — это механическая характеристика материалов: напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения для материалов, имеющих эту площадку (см. рис. 2.3):
Кривая деформации при растяжении

Предел текучести устанавливает границу между упругой и упруго-пластической зонами деформирования.

Даже небольшое увеличение напряжения (нагрузки) выше предела текучести вызывает значительные деформации.

Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести: напряжение, при котором остаточная деформация образца достигает определенного значения, установленного техническими условиями (большего, чем это установлено для предела упругости).

Обычно допуском для величины остаточной деформации при растяжении принято остаточное удлинение 0,2 %. Эта величина называется условным пределом текучести:

Кривая деформации при растяжении

где Pq 2 — нагрузка при условном пределе текучести.

При увеличении напряжений сверх предела текучести при растяжении в результате сильной деформации происходит упрочнение металла (изменение его структуры и свойств) и сопротивление деформации увеличивается, поэтому за участком текучести, т. е. за точкой 3, наблюдается подъем кривой растяжения (участок упрочнения). До точки 4 удлинение образца происходит равномерно. Наибольшее значение нагрузки, предшествовавшее разрушению образца, обозначим Рмакс. Точка 4 характеризует максимальное условное напряжение, возникающее в процессе испытания, называемое временным сопротивлением.

Читайте также:  Болит мышца ноги растяжение

Временное сопротивление ав — условное напряжение, определяемое по отношению действующей силы к исходной площади поперечного сечения образца и отвечающее наибольшей нагрузке ^макс’ предшествовавшей разрушению образца:

Кривая деформации при растяжении

В момент, соответствующий нагрузке Рмакс, появляется заметное местное сужение образца (шейка). Если до этого момента образец имел цилиндрическую форму, то теперь растяжение образца сосредоточивается в области шейки.

Участку 4—5 соответствует быстрое уменьшение сечения шейки, вследствие чего растягивающая сила уменьшается, хотя напряжение растет (площадь сечения в шейке ^врFq).

При дальнейшей деформации шейка сужается и образец разрывается по наименьшему сечению FK, где напряжения в действительности достигают наибольшей величины. Таким образом, нарастание пластической деформации при растяжении происходит поэтапно: равномерная пластическая деформация до точки 4 и местная пластическая деформация от точки 4 до точки 5 — момента разрушения.

Моменту разрыва соответствует точка 5, усилие разрыва обозначим Рк. Отношение разрывающего усилия к действительной площади сечения в месте разрыва называется истинным сопротивлением разрыву:

Кривая деформации при растяжении

У пластичных металлов в является характеристикой сопротивления пластической деформации, а у хрупких — характеристикой сопротивления разрушению.

Для пластичных материалов, образующих при растяжении шейку, характеристикой сопротивления разрушению служит истинное сопротивление разрыву (при разрушении).

При определении пределов пропорциональности, упругости, текучести и временного сопротивления соответствующая им нагрузка Р относилась к начальной площади поперечного сечения образца, т. е. площади образца до испытания. При растяжении образца в области упругой деформации или близко от нее, т. е. при определении пределов пропорциональности и упругости, можно пренебречь небольшим изменением площади сечения образца.

Однако в области пластической деформации изменение сечения образца становится значительным. Поэтому теоретически возможно для определения временного сопротивления и предела текучести относить соответствующую нагрузку не к исходной площади образца, а к его действительной площади, которую он имеет в момент приложения соответствующей нагрузки.

Напряжения, определенные по отношению приложенной нагрузки к начальной площади образца, называются условными напряжениями, а определенные по отношению к действительной площади — истинными.

На рис. 2.4 дана диаграмма истинных напряжений. В диаграмме по оси абсцисс откладывается относительное удлинение с = Д///0, а по оси ординат — нормальное напряжение а = P/Fq, где /0 и Fq — первоначальные длина и площадь сечения образца. Диаграмма в координатах «напряжения — деформации» на участке 4—5 является условной, как было указано выше. При напряжении, соответ-

Диаграмма истинных напряжений ствующем временному сопротивлению

Рис. 2.4. Диаграмма истинных напряжений ствующем временному сопротивлению (точка 4), образуется шейка и площадь сечения резко уменьшается, поэтому истинное напряжение увеличивается и истинная диаграмма 4—5′ расположена выше условной диаграммы 4—5.

Следует отметить, что временное сопротивление не совпадает с сопротивлением разрыву и оказывается меньше последнего. Истинное сопротивление разрыву получается делением наибольшей нагрузки Рпч (точка 4′) на истинную уменьшенную площадь сечения FBp в момент начала появления шейки.

Таким образом, истинные напряжения с увеличением деформации непрерывно растут до момента разрушения образца.

Показателем пластической деформации является его абсолютное остаточное удлинение А/0Ст.п ПРИ разрыве (отрезок ОЛ[ на рис. 2.3), так как упругая деформация (отрезок A^2) исчезает после разрыва:
Кривая деформации при растяжении

где /0 — начальная длина образца, /к — конечная длина образца (рис. 2.5).

Общее удлинение образца при растяжении слагается из равномерного и сосредоточенного удлинения (за счет образования шейки). Так как размеры испытуемых образцов могут быть различными, то характеристикой пластичности образца служит не его абсолютное, а относительное остаточное удлинение при разрыве 6 — отношение приращения расчетной длины образца после разрыва
Кривая деформации при растяжениик первоначальной расчетной длине /0 в процентах:

Кривая деформации при растяжении

Чем больше 5, тем пластичнее металл.

Образцы до растяжения (а) и после растяжения (б)

Рис. 2.5. Образцы до растяжения (а) и после растяжения (б)

Другой характеристикой пластичности металла является относительное сужение сечения ц/ после разрыва (в процентах) — отношение разности начальной площади и минимальной площади поперечного сечения образца разрыва к начальной площади поперечного сечения образца.

Если Fq — начальная площадь образца, FK — минимальная площадь сечения в месте образования шейки (в месте разрыва), то относительное сужение (в процентах)

Кривая деформации при растяжении

При оценке свойств образцов пластических материалов большое значение имеет их сопротивление пластической деформации. Оно показывает, какое напряжение можно допустить, не вызывая (или вызывая допускаемую величину) пластической деформации, т. е. изменения металла под действием внешних сил.

Свойства, характеризующие сопротивление пластической деформации, можно разделить на две группы: сопротивление металла малым пластическим деформациям и сопротивление металла значительным пластическим деформациям.

Величиной, характеризующей сопротивление малым пластическим деформациям, является предел упругости. Свойства сопротивления металла значительным пластическим деформациям проявляются при напряжениях выше условного предела текучести. Для пластических металлов временное сопротивление определяет сопротивление их значительным пластическим деформациям. Временное сопротивление является основной характеристикой хрупких материалов, разрушающихся при малых пластических деформациях.

В табл. 2.1 приведены механические характеристики некоторых материалов.

Источник