Какие деформации возникают при осевом растяжении

Какие деформации возникают при осевом растяжении thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Читайте также:  Растяжение ткани больше или меньше поперечные

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Какие деформации возникают при осевом растяжении

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Напряжения и деформации. Коэффициент Пуассона. Закон Гука

Осевое растяжение (рис. 2.1, а) и сжатие (рис. 2.1, б) возникают под действием сил, направленных вдоль оси бруса (стержня). При растяжении (сжатии) в поперечном сечении бруса возникает только одно внутреннее усилие — продольная сила N. На растяжение (сжатие) работают канаты, стержни ферм и т.п. Растяжение (сжатие) могут вызвать сосредоточенные силы и продольная распределенная нагрузка (рис. 2.2). Здесь q — интенсивность продольной распределенной нагрузки, сила, приходящаяся на единицу длины, Н/м, кН/м.

Осевое растяжение (а) и сжатие (б)

Рис. 2.1. Осевое растяжение (а) и сжатие (б)

Элемент, работающий на растяжение

Рис. 2.2. Элемент, работающий на растяжение

Изобразим стержень, который подвергается центральному растяжению (рис. 2.3). Для определения внутренних сил применим метод сечений. В произвольном сечении стержня покажем внутренние усилия, которые при данном виде нагружения будут совпадать с направлением нормальных напряжений.

Читайте также:  Построение эпюр напряжений и перемещений при растяжении

Дефрмации при осевом растяжении (а) и равнодействующая внутренних сил (б)

Рис. 2.3. Дефрмации при осевом растяжении (а) и равнодействующая внутренних сил (б): / — исходное состояние; 2 — деформационное состояние

Равнодействующая внутренних усилий будет состоять только из продольной составляющей:
Какие деформации возникают при осевом растяжении

Она будет приложена в центре тяжести сечения стержня, который совпадает с продольной осью.

Какие деформации возникают при осевом растяжении

При расчетах по методу сечений будем всегда продольную силу направлять наружу. Если N > 0, то она направлена верно, а если получается, что jV

Составим уравнение равновесия отсеченной части:

Какие деформации возникают при осевом растяжении

Из гипотезы плоских сечений, высказанной голландским ученым Д. Бернулли, следует, что в пределах действия закона Гука плоские поперечные сечения стержня смещаются при растяжении параллельно начальным положениям, оставаясь плоскими (рис. 2.3, б). Это возможно лишь в случае, если нормальные напряжения во всех точках сечения одинаковы, т.е. О = const. Отсюда следует:

Какие деформации возникают при осевом растяжении

Под действием осевых растягивающих сил стержень постоянного сечения площадью А удлиняется на величину

Какие деформации возникают при осевом растяжении

где /j и /0 — длины стержня в деформированном и начальном состояниях;

А/ — абсолютное или полное удлинение.

Относительное удлинение

Какие деформации возникают при осевом растяжении

При растяжении и сжатии возникает также и поперечная деформация стержня

Какие деформации возникают при осевом растяжении

где и а ширина стержня в деформированном и первоначальном состояниях; А а — абсолютная поперечная деформация.

Относительная поперечная деформация

Какие деформации возникают при осевом растяжении

Знак (-) показывает, что при растяжении поперечные размеры стержня уменьшаются.

Коэффициент Пуассона. Отношение поперечной деформации к продольной при растяжении (сжатии), взятое по абсолютной величине, называют коэффициентом Пуассона:

Какие деформации возникают при осевом растяжении

Значение V для всех материалов находится в пределах 0

Закон Гука. Для подавляющего большинства конструкционных материалов с достаточной для практики точностью можно считать, что в известных пределах нагружения между продольной деформацией и соответствующим (действующим в ее направлении) нормальным напряжением существует пропорциональная (линейная) зависимость. Эта зависимость носит название закона Гука и записывается в виде
Какие деформации возникают при осевом растяжении

где Е — коэффициент пропорциональности, именуемый модулем упругости первого рода (модуль Юнга).

По физическому смыслу модуль упругости — напряжение, которое вызывает деформацию ? = 1 (удлинение стержня, равное первоначальной длине).

Для статей по данным экспериментов Е = (2…2,2)105 МПа для ста-

N А/

леи. Учитывая, что О = —, ? = —, закон Гука для растянутого стержня можно записать

Какие деформации возникают при осевом растяжении

где X] =— — коэффициент податливости стержня, показывающий уд-

is • А

линение (укорочение) стержня, вызываемое растягивающей силой F= 1 Н.

Произведение ЕА называют жесткостью сечения стержня при растяжении (сжатии). Для стержней переменного (ступенчатого) сечения удлинения определяют по участкам (ступеням) и результаты суммируют алгебраически:

Какие деформации возникают при осевом растяжении

где i — номер участка (i = 1, 2,…,«).

При расчете упругих перемещений стержня от нескольких сил часто применяют принцип независимости действия сил: перемещение стержня от действия группы сил может быть получено как сумма перемещений от действия каждой силы в отдельности.

Пример 2.1. Определить полное удлинение стержня (рис. 2.4).

Решение

Определение внутренних сил и построение их эпюрыКакие деформации возникают при осевом растяжении

Рис. 2.4. Определение внутренних сил и построение их эпюры

Определим с помощью метода сечений значения продольной силы на каждом участке. Для этого сделаем три сечения. Рассмотрим равновесие отсеченных частей:
Какие деформации возникают при осевом растяжении

Изобразим графически распределение продольных сил по длине стержня. График изменения продольных сил по длине стержня называется эпюрой. Каждая ордината эпюры равна значению N в данном сечении. Эпюру строят на линии, проведенной параллельно оси стержня. Подставив найденные значения N, N2, N3 в формулу, определим общее удлинение стержня

Какие деформации возникают при осевом растяжении

Пример 2.2. Определить величину напряжения О. возникающего в поперечном сечении, абсолютное удлинение Д/ и относительное укорочение ? стального стержня диаметром d = 40 мм, длиной / = 1,5 м, растягиваемого силой F = 100 кН, если Е = 2,1 • 105 Н/мм2 (рис. 2.5).

К примеру 2.2

Рис. 2.5. К примеру 2.2

Решение

Площадь сечения
Какие деформации возникают при осевом растяжении Напряжение

Какие деформации возникают при осевом растяжении

Абсолютное удлинение
Какие деформации возникают при осевом растяжении Относительное удлинение

Какие деформации возникают при осевом растяжении

Пример 2.3. Стальная штанга длиной / = 8 м и площадью сечения А = 8 см2 под действием растягивающей нагрузки получила абсолютное удлинение А/ = 5,7 мм. Определить величину нагрузки F и напряжения G, если известно, что модуль упругости материала тяги Е = 2,МО5 МПа (рис. 2.6).

Читайте также:  Растяжение связки народная медицина

Решение

Относительное удлинение
Какие деформации возникают при осевом растяжении Величина напряжения

Какие деформации возникают при осевом растяжении

Величина нагрузки
К примеру 2.3

Какие деформации возникают при осевом растяжении

Рис. 2.6. К примеру 2.3

Источник

Как отмечалось ранее, в поперечном сечении бруса, под действием внешних сил возникают внутренние силовые факторы. В зависимости от того, какие силовые факторы имеют место в данном сечении бруса, определяется вид нагружения: растяжение (сжатие), сдвиг, кручение, изгиб или сложное сопротивление.

Растяжение (сжатие) – вид нагружения бруса, при котором в его продольном сечении возникает только продольная сила N, а остальные силовые факторы отсутствуют. При растяжении на брус действуют силы, приложенные к его торцам, равные по величине и противоположные по направлению (от сечения). При действии тех же сил в направлении к сечению возникает сжатие. Поскольку при растяжении длина бруса удлиняется, а при сжатии укорачивается, то его укорочение можно рассматривать как отрицательное удлинение.

Растягивающая сила вызывает абсолютное удлинение бруса на величину Dl и и уменьшение его поперечных размеров, сжимающая сила наоборот вызывает уменьшение длины и увеличение поперечного размера. Абсолютное удлинение или укорочение, измеренное в единицах длины (м), не дает общего представления о значительности продольной деформации. Поэтому за характеристику деформации растяжения и сжатия принимают относительное удлинение (линейная деформация) ε=Dl/l, где l – первоначальная длина. Величина ε получается в результате деления двух величин, имеющих одинаковую размерность, а следовательно сама не имеет размерности и является отвлеченным числом. Величина ε может быть выражена в %.

Для решения практических задач сопротивления материалов, важно установить взаимную связь, между линейными перемещениями, и вызвавшими их силами.

Закон Гука, устанавливает связь между нагрузкой, размерными характеристиками бруса и свойством материала из которого он изготовлен. Абсолютное удлинение (укорочение) прямо пропорционально величине силы и длине бруса и обратно пропорционально модулю продольной упругости и площади поперечного сечения.

Разделим обе части выражения на длину бруса l, получим:

Ввиду того, что сила направлена к сечению под углом 90º, можно утверждать, что полное напряжение будет иметь только нормальную составляющую. Тогда σ=р, или σ=F/S, откуда можно записать другое математическое выражение закона Гука:

т.е. нормальное напряжение прямо пропорционально относительной продольной деформации. Выразив Е через σ и ε, получим:

т.е. модуль продольной упругости представляет собой отношение нормального напряжения к соответствующему ему относительному удлинению (укорочению). Величина ε – отвлеченное число, следовательно размерность модуля упругости выражается в н/м2, или кГ/см2. Величина его определяется опытным путем. Приведем примеры для некоторых материалов.

Наименование материала Модуль упругости Е
Мн/м2 кГ/см2
Сталь 2*105 – 2,2*105 2*106 – 2,2*106
Алюминий 0,675*105 0,675*106
Чугун 0,75*105 – 1,6*105 0,75*106 – 1,6*106
Дерево вдоль волокон 1*104 1*105
Дерево поперек волокон 5*102 5*103

Закон Гука можно выразить графически. Для этого по оси Х отложим в некотором масштабе величину относительной деформации ε, а по оси Y – соответствующее ей напряжение. Тогда tgα=σ/ε, но имея выражение Е=σ/ε, получим tgα=Е. Однако закон Гука действует только до предельного значения напряжения (предела пропорциональности), а далее зависимость становиться нелинейной.

Как уже отмечалось, при растяжении (сжатии) наблюдается не только осевая деформация, но и поперечная. Опытным путем установлено, что поперечные деформации при растяжении и сжатии прямо пропорциональны продольным деформациям. По аналогии с продольной деформацией введем понятие относительной поперечной деформации.

Тогда, частное от деления относительной поперечной деформации на относительную продольную деформацию при осевом растяжении (сжатии), взятое по абсолютной величине, называется коэффициентом Пуассона и обозначается μ:

Установлено, что величина μ постоянна лишь в пределах закона Гука. Приведем несколько значений коэффициента Пуассона:

Материал μ
Сталь 0,25-0,33
Чугун 0,23-0,27
Алюминий 0,26-0,36
Бетон 0,08-0,18
Каучук 0,47

Источник