Как найти растяжение троса

Как найти растяжение троса thumbnail

В физике, сила натяжения — это сила, действующая на веревку, шнур, кабель или похожий объект или группу объектов. Все, что натянуто, подвешено, поддерживается или качается на веревке, шнуре, кабеле и так далее, является объектом силы натяжения. Подобно всем силам, натяжение может ускорять объекты или становиться причиной их деформации. Умение рассчитывать силу натяжения является важным навыком не только для студентов физического факультета, но и для инженеров, архитекторов; те, кто строит устойчивые дома, должны знать, выдержит ли определенная веревка или кабель силу натяжения от веса объекта так, чтобы они не проседали и не разрушались. Приступайте к чтению статьи, чтобы научиться рассчитывать силу натяжения в некоторых физических системах.

Определение силы натяжения на одной нити

  1. 1

    Определите силы на каждом из концов нити. Сила натяжения данной нити, веревки является результатом сил, натягивающих веревку с каждого конца. Напоминаем, сила = масса × ускорение. Предполагая, что веревка натянута туго, любое изменение ускорения или массы объекта, подвешенного на веревке, приведет к изменению силы натяжения в самой веревке. Не забывайте о постоянном ускорении силы тяжести — даже если система находится в покое, ее составляющие являются объектами действия силы тяжести. Мы можем предположить, что сила натяжения данной веревки это T = (m × g) + (m × a), где «g» — это ускорение силы тяжести любого из объектов, поддерживаемых веревкой, и «а» — это любое другое ускорение, действующее на объекты.

    • Для решения множества физических задач, мы предполагаем идеальную веревку — другими словами, наша веревка тонкая, не обладает массой и не может растягиваться или рваться.
    • Для примера, давайте рассмотрим систему, в которой груз подвешен к деревянной балке с помощью одной веревки (смотрите на изображение). Ни сам груз, ни веревка не двигаются — система находится в покое. Вследствие этого, нам известно, чтобы груз находился в равновесии, сила натяжения должна быть равна силе тяжести. Другими словами, Сила натяжения (Ft) = Сила тяжести (Fg) = m × g.
      • Предположим, что груз имеет массу 10 кг, следовательно, сила натяжения равна 10 кг × 9,8 м/с2 = 98 Ньютонов.
  2. 2

    Учитывайте ускорение. Сила тяжести — не единственная сила, что может влиять на силу натяжения веревки — такое же действие производит любая сила, приложенная к объекту на веревке с ускорением. Если, к примеру, подвешенный на веревке или кабеле объект ускоряется под действием силы, то сила ускорения (масса × ускорение) добавляется к силе натяжения, образованной весом этого объекта.

    • Предположим, что в нашем примере на веревку подвешен груз 10 кг, и вместо того, чтобы быть прикрепленным к деревянной балке, его тянут вверх с ускорением 1 м/с2. В этом случае, нам необходимо учесть ускорение груза, также как и ускорение силы тяжести, следующим образом:
      • Ft = Fg + m × a
      • Ft = 98 + 10 кг × 1 м/с2
      • Ft = 108 Ньютонов.
  3. 3

    Учитывайте угловое ускорение. Объект на веревке, вращающийся вокруг точки, которая считается центром (как маятник), оказывает натяжение на веревку посредством центробежной силы. Центробежная сила — дополнительная сила натяжения, которую вызывает веревка, «толкая» ее внутрь так, чтобы груз продолжал двигаться по дуге, а не по прямой. Чем быстрее движется объект, тем больше центробежная сила. Центробежная сила (Fc) равна m × v2/r где «m»– это масса, «v» — это скорость, и «r» — радиус окружности, по которой движется груз.

    • Так как направление и значение центробежной силы меняются в зависимости от того, как объект движется и меняет свою скорость, то полное натяжение веревки всегда параллельно веревке в центральной точке. Запомните, что сила притяжения постоянно действует на объект и тянет его вниз. Так что, если объект раскачивается вертикально, полное натяжение сильнее всего в нижней точке дуги (для маятника это называется точкой равновесия), когда объект достигает максимальной скорости, и слабее всего в верхней точке дуги, когда объект замедляется.
    • Давайте предположим, что в нашем примере объект больше не ускоряется вверх, а раскачивается как маятник. Пусть наша веревка будет длиной 1,5 м, а наш груз движется со скоростью 2 м/с, при прохождении через нижнюю точку размаха. Если нам нужно рассчитать силу натяжения в нижней точке дуги, когда она наибольшая, то сначала надо выяснить равное ли давление силы тяжести испытывает груз в этой точке, как и при состоянии покоя — 98 Ньютонов. Чтобы найти дополнительную центробежную силу, нам необходимо решить следующее:
      • Fc = m × v2/r
      • Fc = 10 × 22/1.5
      • Fc =10 × 2,67 = 26,7 Ньютонов.
      • Таким образом, полное натяжение будет 98 + 26,7 = 124,7 Ньютона.
  4. 4

    Учтите, что сила натяжения благодаря силе тяжести меняется по мере прохождения груза по дуге. Как было отмечено выше, направление и величина центробежной силы меняются по мере того, как качается объект. В любом случае, хотя сила тяжести и остается постоянной, результирующая сила натяжения в результате тяжести тоже меняется. Когда качающийся объект находится не в нижней точке дуги (точке равновесия), сила тяжести тянет его вниз, но сила натяжения тянет его вверх под углом. По этой причине сила натяжения должна противодействовать части силы тяжести, а не всей ее полноте.

    • Разделение силы гравитации на два вектора сможет помочь вам визуально изобразить это состояние. В любой точке дуги вертикально раскачивающегося объекта, веревка составляет угол «θ» с линией, проходящей через точку равновесия и центр вращения. Как только маятник начинает раскачиваться, сила гравитации (m × g) разбивается на 2 вектора — mgsin(θ), действуя по касательной к дуге в направлении точки равновесия и mgcos(θ), действуя параллельно силе натяжения, но в противоположном направлении. Натяжение может только противостоять mgcos(θ) — силе, направленной против нее — не всей силе тяготения (исключая точку равновесия, где все силы одинаковы).
    • Давайте предположим, что, когда маятник отклоняется на угол 15 градусов от вертикали, он движется со скоростью 1,5 м/с. Мы найдем силу натяжения следующими действиями:
      • Отношение силы натяжения к силе тяготения (Tg) = 98cos(15) = 98(0,96) = 94,08 Ньютона
      • Центробежная сила (Fc) = 10 × 1,52/1,5 = 10 × 1,5 = 15 Ньютонов
      • Полное натяжение = Tg + Fc = 94,08 + 15 = 109,08 Ньютонов.
  5. 5

    Рассчитайте трение. Любой объект, который тянется веревкой и испытывает силу «торможения» от трения другого объекта (или жидкости), передает это воздействие натяжению в веревке. Сила трения между двумя объектами рассчитывается также, как и в любой другой ситуации — по следующему уравнению: Сила трения (обычно пишется как Fr) = (mu)N, где mu — это коэффициент силы трения между объектами и N — обычная сила взаимодействия между объектами, или та сила, с которой они давят друг на друга. Отметим, что трение покоя — это трение, которое возникает в результате попытки привести объект, находящийся в покое, в движение — отличается от трения движения — трения, возникающего в результате попытки заставить движущийся объект продолжать движение.

    • Давайте предположим, что наш груз в 10 кг больше не раскачивается, теперь его буксируют по горизонтальной плоскости с помощью веревки. Предположим, что коэффициент трения движения земли равен 0,5 и наш груз движется с постоянной скоростью, но нам нужно придать ему ускорение 1м/с2. Эта проблема представляет два важных изменения — первое, нам больше не нужно рассчитывать силу натяжения по отношению к силе тяжести, так как наша веревка не удерживает груз на весу. Второе, нам придется рассчитать натяжение, обусловленное трением, также как и вызванное ускорением массы груза. Нам нужно решить следующее:
      • Обычная сила (N) = 10 кг & × 9,8 (ускорение силы тяжести) = 98 N
      • Сила трения движения (Fr) = 0,5 × 98 N = 49 Ньютонов
      • Сила ускорения (Fa) = 10 kg × 1 м/с2 = 10 Ньютонов
      • Общее натяжение = Fr + Fa = 49 + 10 = 59 Ньютонов.

Расчет силы натяжения на нескольких нитях

  1. 1

    Поднимите вертикальные параллельные грузы с помощью блока. Блоки — это простые механизмы, состоящие из подвесного диска, что позволяет менять направление силы натяжения веревки. В простой конфигурации блока, веревка или кабель идет от подвешенного груза вверх к блоку, затем вниз к другому грузу, создавая тем самым два участка веревки или кабеля. В любом случае натяжение в каждом из участков будет одинаковым, даже если оба конца будут натягиваться силами разных величин. Для системы двух масс, подвешенных вертикально в блоке, сила натяжения равна 2g(m1)(m2)/(m2+m1), где «g» — ускорение силы тяжести, «m1» — масса первого объекта, «m2»– масса второго объекта.

    • Отметим следующее, физические задачи предполагают, что блоки идеальны — не имеют массы, трения, они не ломаются, не деформируются и не отделяются от веревки, которая их поддерживает.
    • Давайте предположим, что у нас есть два вертикально подвешенных на параллельных концах веревки груза. У одного груза масса 10 кг, а у второго — 5 кг. В этом случае, нам необходимо рассчитать следующее:
      • T = 2g(m1)(m2)/(m2+m1)
      • T = 2(9,8)(10)(5)/(5 + 10)
      • T = 19,6(50)/(15)
      • T = 980/15
      • T = 65,33 Ньютонов.
    • Отметим, что, так как один груз тяжелее, все остальные элементы равны, эта система начнет ускоряться, следовательно, груз 10 кг будет двигаться вниз, заставляя второй груз идти вверх.
  2. 2

    Подвесьте грузы, используя блоки с не параллельными вертикальными нитями. Блоки зачастую используются для того, чтобы направлять силу натяжения в направлении, отличном от направления вниз или вверх. Если, к примеру, груз подвешен вертикально к одному концу веревки, а другой конец держит груз в диагональной плоскости, то непараллельная система блоков принимает форму треугольника с углами в точках с первых грузом, вторым и самим блоком. В этом случае натяжение в веревке зависит как от силы тяжести, так и от составляющей силы натяжения, которая параллельна к диагональной части веревки.

    • Давайте предположим, что у нас есть система с грузом в 10 кг (m1), подвешенным вертикально, соединенный с грузом в 5 кг(m2), расположенным на наклонной плоскости в 60 градусов (считается, что этот уклон не дает трения). Чтобы найти натяжение в веревке, самым легким путем будет сначала составить уравнения для сил, ускоряющих грузы. Далее действуем так:
      • Подвешенный груз тяжелее, здесь нет трения, так что мы знаем, что он ускоряется вниз. Натяжение в веревке тянет вверх, так что он ускоряется по отношению к равнодействующей силе F = m1(g) — T, или 10(9,8) — T = 98 — T.
      • Мы знаем, что груз на наклонной плоскости ускоряется вверх. Так как она не имеет трения, мы знаем, что натяжение тянет груз вверх по плоскости, а вниз его тянет только свой собственный вес. Составляющая силы, тянущей вниз по наклонной, вычисляется как mgsin(θ), так что в нашем случае мы можем заключить, что он ускоряется по отношению к равнодействующей силе F = T — m2(g)sin(60) = T — 5(9,8)(0,87) = T — 42,14.
      • Если мы приравняем эти два уравнения, то получится 98 — T = T — 42,14. Находим Т и получаем 2T = 140,14, или T = 70,07 Ньютонов.
  3. 3

    Используйте несколько нитей, чтобы подвесить объект. В заключение, давайте представим, что объект подвешен на «Y-образной» системе веревок — две веревки закреплены на потолке и встречаются в центральной точке, из которой идет третья веревка с грузом. Сила натяжения третьей веревки очевидна — простое натяжение в результате действия силы тяжести или m(g). Натяжения на двух остальных веревках различаются и должны составлять в сумме силу, равную силе тяжести вверх в вертикальном положении и равны нулю в обоих горизонтальных направлениях, если предположить, что система находится в состоянии покоя. Натяжение в веревке зависит от массы подвешенных грузов и от угла, на который отклоняется от потолка каждая из веревок.

    • Давайте предположим, что в нашей Y-образной системе нижний груз имеет массу 10 кг и подвешен на двух веревках, угол одной из которых составляет с потолком 30 градусов, а угол второй — 60 градусов. Если нам нужно найти натяжение в каждой из веревок, нам понадобится рассчитать горизонтальную и вертикальную составляющие натяжения. Чтобы найти T1 (натяжение в той веревке, наклон которой 30 градусов) и T2 (натяжение в той веревке, наклон которой 60 градусов), нужно решить:
      • Согласно законам тригонометрии, отношение между T = m(g) и T1 и T2 равно косинусу угла между каждой из веревок и потолком. Для T1, cos(30) = 0,87, как для T2, cos(60) = 0,5
      • Умножьте натяжение в нижней веревке (T=mg) на косинус каждого угла, чтобы найти T1 и T2.
      • T1 = 0,87 × m(g) = 0,87 × 10(9,8) = 85,26 Ньютонов.
      • T2 =0,5 × m(g) = 0,5 × 10(9,8) = 49 Ньютонов.

Об этой статье

Эту страницу просматривали 219 643 раза.

Была ли эта статья полезной?

Источник

При покупке такелажных приспособлений важно знать, какую нагрузку выдерживает трос, поскольку любой перегруз может привести к обрыву подвесной системы. Допустимые значения стального каната определяются его прочностными характеристиками, которые могут варьироваться согласно конструкции, диаметру и способу производства.

Разновидности стальных канатов

Тросы относятся к крученым или витым изделиям, изготавливаемым из стали, синтетических и органических нитей. В производстве стальной продукции применяется оцинкованная высокоуглеродистая проволока сечением 0,4–3 мм, обладающая значительным запасом прочности при нагрузках на разрыв (от 130 до 200 кгс/мм2).

Металлические нити, используемые в изготовлении продукции, бывают нескольких марок. Наилучшими прочностными характеристиками обладает проволока категории В, менее качественным считается сырье марок I и II. Прежде чем определить, какую нагрузку выдерживает трос 5 мм или другой толщины, следует принять во внимание, что вне зависимости от качества материала канаты различаются между собой по конструкции и бывают трех типов:

  • Одинарной свивки – сделаны из одной пряди с проволокой одинакового сечения. Их элементы свиваются вокруг одной из металлических нитей до 4-х слоев. Маркируются стальные тросы как сумма из цифр, указывающих на число проволок в плетении. Например, 1+9+9 говорит о том, что в канате имеется 19 проволок, из них одна размещается в центральной части, 9 свиты в первом слое и 9 во втором.
  • Двойной свивки – изготовлены из нескольких прядей, накладываемых в 1–2 слоя вокруг сердечника. Для сердечника используют свитую проволоку, органические или минеральные материалы, которые улучшают прочность стального троса и предотвращают проваливание прядей внутрь изделия. Чаще всего такую продукцию применяют для тросовой работы.
  • Тройной свивки – сделаны из нескольких тросов. Как и при двойной свивке, они имеют сердечник, однако изготавливаются из проволоки меньшего сечения и используется там, где необходима повышенная гибкость канатов (как правило, для кабельных работ).

Проволока, расположенная в разных слоях, может иметь точечное, линейное или точечно-линейное касание. Устанавливая, какую нагрузку выдерживает трос диаметром 6 мм или иной толщины, нужно учитывать, что канаты с точечным касанием (ТК) актуальны только при незначительных пульсирующих нагрузках. Изделия с линейным касанием (ЛК) отличаются обширной сферой применения, а с точечно-линеныйм (ТЛК) используются в местах, где ЛК не могут обеспечить рекомендуемый запас прочности.

При изготовлении продукции обычно применяется крестовая свивка. Проволока в ее наружном слое имеет различное направление, что гарантирует более крепкое сплетение и простоту в эксплуатации. По желанию заказчиков заводы-производители могут изготовить и другие разновидности свивки, такие как одностороннюю и комбинированную.

Помимо классификации по конструкции, канаты делятся по степени скручивания и могут быть гибкими или жесткими. Последние характеризуются более высокой прочностью на разрыв, поскольку выпускаются из малого числа металлических нитей большого диаметра. Для сравнения гибкости тех или иных модификаций можно воспользоваться таблицей.

Вид

Конструкция

Коэффициент гибкости

Однопрядный

1х19

5

1х37

7

ЛК-О

6х19+1

12

ТК

6х19+1

15

ТЛК-О

6х37+1

21

Тройной свивки

6х6х7+7

27

Параметры прочности стальных тросов на разрыв

Чтобы установить, какую нагрузку выдерживает стальной трос, важно учесть, что его выбор определяется двумя основными параметрами – разрывной и рабочей прочностью.

Разрывная прочность

Под разрывной прочностью понимается минимальное усилие на канат, при котором он будет рваться. Если необходимо определить эту величину троса стального, характеристики на разрыв берут из ГОСТ или выявляют по формуле:

R=Kd2, где

  • K – коэффициент запаса прочности;
  • d – диаметр, мм.

Коэффициент К при подсчете разрывной нагрузки тросов является неизменным и выбирается в зависимости от разновидности конкретной продукции. Так, если надо выяснить значение изделия однопрядного типа, используют показатель 70. Для каната с одним органическим сердечником берут цифру 40, с несколькими сердечниками – 34.

Рабочая прочность

Чтобы подобрать изделие под конкретные условия работы, необходимо ориентироваться на рабочую прочность стальных тросов на разрыв. Этот параметр определяется как допустимое натяжение, которое канат может выдержать при эксплуатации без потери целостности. Для подсчета значения можно использовать следующую формулу:

Р= R/К, где

  • R – разрывная прочность, кгс;
  • K – коэффициент запаса крепости.

Важно учитывать, что данный параметр, равно как и разрывное усилие, зависит от толщины каната. Иными словами, характеристики стального троса 5 мм будут отличаться, например, от разрывной нагрузки троса 6 мм. Обратите внимание, что за единицу измерения при подсчетах рабочей крепости принимается 1 килоньютон (кН), равный 100кг.

При определении допустимого и разрывного усилия стальных канатов таблица ниже поможет выяснить характеристики наиболее распространенных диаметров.

Диаметр

Допустимая нагрузка на трос, кН

Разрывное усилие, кН

2 мм

0,47

2,35

3 мм

1,06

5,29

4 мм

1,88

9,41

5 мм

2,94

14,7

6 мм

4,24

21,2

8 мм

7,52

37,6

10 мм

17,6

58,8

Как понятно из предложенной таблицы, канаты данных диаметров будут продолжительное время функционировать без повреждений при нагрузках в диапазоне 47–174 кг. Вместе с тем, усилие, необходимое для их повреждения, составляет от 235 кг для металлического троса 2 мм до 5880 кг для троса 10 мм.

На основании сказанного можно сделать вывод, что параметры прочности канатов играют основополагающую роль при покупке. Если заблаговременно выяснить разрывные нагрузки стальных тросов и подобрать их под конкретные рабочие условия, изделия будут надежно и длительно выполнять свои функции при перевозке или подъеме грузов.

Источник

Читайте также:  Какие внутренние усилия возникают при растяжении