Энергия системы при растяжении и сжатии

Энергия системы при растяжении и сжатии thumbnail

Считая процесс нагружения квазистатическим и учитывая линейную связь Al(N), для потенциальной энергии деформации имеем

Энергия системы при растяжении и сжатии

Если брус неоднородный, то

Энергия системы при растяжении и сжатии

Удельная потенциальная энергия деформации, соответственно, равна

Энергия системы при растяжении и сжатии

Статически неопределимые системы. Перемещение систем в пространстве ограничено связями. Если число связей, наложенных на систему, больше, чем необходимое для ее решения число уравнений статики, то такие системы называют статически неопределимыми. Для их решения используют дополнительные уравнения совместности деформаций. Характерной особенностью статически неопределимых систем является возникновение в них температурных напряжений, образующихся без внешних усилий под воздействием температуры.

При испытании на растяжение обеспечивается однородность напряженного состояния всех точек образца на рабочей длине. Испытание на растяжение достаточно просто, а его результаты в меньшой степени зависят от формы и размеров образца, чем испытания других видов. Наконец, испытание на растяжение позволяет получить достоверные характеристики прочности, упругости и пластичности материала, которые можно также использовать в расчетах деталей, работающих в условиях сложного напряженного состояния.

Характерный вид диаграммы растяжения образца из пластичного материала представлен на рис. 14.3. На этой диаграмме можно выделить четыре основных участка (зоны).

Диаграммы растяжения образцов

Рис. 143. Диаграммы растяжения образцов

На участке ОЛ материал подчиняется закону Гука. Деформации образца очень малы и при разгрузке исчезают. Участок ОЛ называют зоной упругости. За пределами этого участка деформация образца складывается из упругой и пластической (остаточной) составляющих.

Участок ВС характеризуется нарастанием пластической деформации без увеличения осевой нагрузки (Р = Рт) и называется зоной общей текучести. При нагрузке Рт во всем объеме рабочей части образца происходят необратимые деформации сдвига между кристаллическими слоями. В результате текучести происходит перестройка кристаллической решетки, несущая способность образца увеличивается и для его дальнейшего деформирования требуется повышение нагрузки.

Участок CD называют зоной упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но гораздо более медленным, чем на участке ОЛ. В точке D диаграммы осевая растягивающая нагрузка достигает максимального значения (Р = Ртах). К этому моменту на образце наметилось место будущего разрыва — образовалось местное сужение, называемое шейкой (или пластический шарнир).

Дальнейший ход испытания связан с прогрессирующим утонением шейки и сосредоточением деформации образца в районе шейки. Участок DFдиаграммы носит название зоны местной текучести. Здесь нагрузка плавно уменьшается (Р тах) вплоть до разрушения образца в шейке.

Если образец нагрузить до точки L диаграммы, а затем плавно уменьшить нагрузку, то зависимость между силой и деформацией изобразится отрезком LM, параллельным прямой О А При полной разгрузке образца его удлинение уменьшится, но не исчезнет. Таким образом, полное удлинение образца в точке L складывается из двух составляющих — упругой А/у и остаточной — Д/(кт. При повторном нагружении такого образца материал будет деформироваться упруго до точки L (см. рис. 14.3, б). В результате предварительной вытяжки материал приобрел способность воспринимать без остаточных деформаций большие нагрузки. Исчезла площадка текучести, материал стал более хрупким. Подобное явление, называемое наклепом (или нагартовкой), широко используют в технике.

Параметры диаграммы растяжения в координатах А/—Р зависят не только от свойств материала образца, но и от его размеров. Чтобы получить характеристики материала, машинную диаграмму А/—Р перестраивают в координатах е —а (относительная деформация — напряжение). Связь между координатами определяется зависимостями

Энергия системы при растяжении и сжатии

где А() — начальная площадь поперечного сечения образца; /() — начальная расчетная длина образца.

Поскольку А0 и /() — константы, диаграмма деформаций при растяжении имеет ту же форму (рис. 14.4, кривая 1). Обработка диаграммы деформаций позволяет определить следующие основные характеристики материала:

  • • физический предел текучести от = Рт/Л();
  • • предел прочности (временное сопротивление) овр = Ртах/Л0;

• относительное удлинение после разрыва
Энергия системы при растяжении и сжатии

• относительное сужение после разрыва
Энергия системы при растяжении и сжатии

Диаграммы деформаций пластичного материала

Рис. 14.4. Диаграммы деформаций пластичного материала:

1 — условная для испытания на растяжение; 2 — истинная; 3 — условная для испытания

на сжатие

Первые две характеристики относятся к характеристикам прочности, две другие — к характеристикам пластичности. Здесь /к — конечная расчетная длина образца; Ак — площадь поперечного сечения образца в месте его разрыва.

По величине относительного удлинения после разрыва 5 материалы условно разделяют на следующие группы:

  • • 8
  • • 5%
  • • 8 > 15% — пластичные материалы.

Более тщательная обработка диаграммы деформаций при растяжении позволяет определить дополнительные характеристики материала. Предел пропорциональности стм определяют как условное напряжение, при котором отступление от прямой пропорциональной зависимости между нагрузкой и удлинением составляет 50% (рис. 14.5). Для получения величины ап к кривой диаграммы деформаций проводится касательная под углом ап = = arctg(tga/l,5).

Под пределом упругости ау понимается наибольшее напряжение, до которого образец не получает остаточных деформаций. Поскольку определить это значение практически невозможно, условным пределом упругости называют то напряжение, при котором остаточная деформация составляет 0,01% (см. рис. 14.5, б). Для материалов без четко выраженной площадки текучести определяют условный предел текучести а0 2, который соответствует остаточной деформации 0,2% (рис. 14.5, в).

Диаграммы a — е

Рис. 14.5. Диаграммы a — е

Следует заметить, что рассмотренная диаграмма деформаций является условной, поскольку в процессе испытания площадь поперечного сечения образца А0 не остается постоянной, а постепенно уменьшается. Напряжение в шейке ак существенно отличается от рассчитанного но формуле a = = Р/А0 Продольная деформация в шейке ?к также значительно превосходит среднюю деформацию образца, характеризуемую величиной 8 (рис. 14.6). Диаграмма зависимости между напряжением и деформацией в шейке носит название истинной диаграммы деформаций (см. рис. 14.4, кривая 2). На участках упругости, текучести и упрочнения она практически совпадает с условной диаграммой деформаций. Последний участок истинной диаграммы деформаций строится как касательная к условной диаграмме,

Читайте также:  Все мази от растяжения связок и мышц

Характер деформации и эпюра остаточных деформаций в месте разрыва образца пластичного материала

Рис. 14.6. Характер деформации и эпюра остаточных деформаций в месте разрыва образца пластичного материала

проведенная из точки FK, координаты которой рассчитываются по формулам:

Диаграммы деформации хрупкого материала

Энергия системы при растяжении и сжатии

Рис. 14.7. Диаграммы деформации хрупкого материала:

  • 1 — при растяжении:
  • 2 — при сжатии

Диаграмма деформаций при растяжении образца хрупкого материала не имеет площадки текучести и зоны упрочнения (рис. 14.7). Разрушение образца происходит при наибольшей величине нагрузки (Р = РП1ах) и весьма малой остаточной деформации без образования шейки. Здесь определяется только одна характеристика предела прочности при растяжении ствр = PmJA0.

Испытание на сжатие применяется в основном для определения характеристик малопластичных и хрупких материалов. Его можно рассматривать как обратное испытанию на растяжение (растяжение с обратным знаком).

При малых деформациях пластичные материалы имеют весьма близкие характеристики растяжения и сжатия. Диаграммы деформаций при растяжении и сжатии (в последней напряжения и деформации условно считают положительными) практически совпадают на участках упругости, текучести и упрочнения. Однако по мере нарастания пластических деформаций при сжатии все больше сказывается влияние трения на торнах и увеличение размеров поперечного сечения образца. В результате нагрузка резко возрастает (см. рис. 14.4, кривая 3), а образец сжимается в тонкий диск (рис. 14.8). Пластичный образец довести до разрушения практически не удается — испытание ограничивается силовыми возможностями испытательной машины.

Диаграмма деформаций при сжатии хрупкого образца подобна диаграмме при растяжении (см. рис. 14.7, кривая 2), однако прочность хрупких материалов при сжатии выше, чем при растяжении. Отношение соответству-

Энергия системы при растяжении и сжатии

Ж 3 и

Рис. 14.8. Испытание на сжатие:

а — сферическая опора нижнего захвата; 6, в — формы выточек на торцах образца; г—е — стадии деформирования пластичного образца; ж—и — характер разрушения хрупкого образца

ющих пределов прочности а]к./а1ф характеризует степень хрупкости материала и составляет:

  • • 2,5—3 — для текстолита;
  • • 3—5 — для чугунов;
  • • 8—14 — для керамики;
  • • 12—150 — для вакуумных стекол.

Испытание на сжатие имеет некоторые особенности по сравнению с испытанием на растяжение. Для устранения перекоса образца при непараллель- ности его торцов в одном из захватов испытательной машины предусмотрена установка сферической опоры (см. рис. 14.8, а). Силы трения между торцами образца и плоскими элементами испытательной машины сдерживают поперечную деформацию образца вблизи его торцов.

В результате образец приобретает характерную бочкообразную форму, в его объеме создается сложное неоднородное напряженное состояние, не соответствующее расчетной схеме. Для уменьшения влияния внешнего трения применяют смазки (вазелин, солидол), прокладки (бумага, пропитанная парафином, тефлон), цилиндрические или конические выточки на торцах (рис. 14.8, б, в). Разрушение хрупкого образца при испытании на сжатие происходит вследствие сколов по плоскостям, наклоненным под углом 45° к оси образца (рис. 14.8, ж, з). Если удается устранить влияние сил внешнего трения на образце, при его разрушении возникают продольные трещины (рис. 14.8, и).

Для испытания на растяжение чаще всего используют образцы с цилиндрической рабочей частью (рис. 14.9). Начальный диаметр d0 выбирается из стандартного ряда в пределах d{) = (3 — 25) мм. Начальное значение расчетной длины образца /() = 11,3~ 10d() («длинный» образец) или /() = 5,65~ ~ 5d0 («короткий» образец). Длина цилиндрического участка 1{ > 1,1 /0.

Концы образца оформляются в виде утолщений (головок), форма и размеры которых определяются захватными устройствами испытательной машин. Между рабочей частью и головками предусмотрены переходные уча-

Стандартные образцы для испытания на растяжение

Рис. 14.9. Стандартные образцы для испытания на растяжение:

а, б — цилиндрические; в — плоский

стки, которые служат для уменьшения концентрации напряжений. Для получения характеристик листового материала с толщиной менее 5 мм применяют плоские образцы (см. рис. 14.9, в). Размер s0 равен толщине листа, ширина Ь0 составляет КНЗО мм, расчетная длина /0 =11,3yjs0b0.

Испытание на сжатие проводят на образцах цилиндрической или кубической формы (рис. 14.10). Для предотвращения потери устойчивости цилиндрического образца во время испытания его высота ограничена: А0 = (1-^3)с70

Образцы для испытания на сжатие

Рис. 14.10. Образцы для испытания на сжатие:

а — цилиндрический; б — кубический

Источник

Работа внешних сил совершается на перемещениях, которые получают точки приложения сил к телу в результате деформации. Если деформации тела совершенно упруги, то после снятия нагрузки затраченная энергия возвращается телом в виде механической энергии.

Потенциальной энергией деформации называется энергия, которая накапливается в деформированном объеме в процессе наложения системы нагрузок.

Рассмотрим потенциальную энергию деформации в пределах действия закона Гука. В области упругих деформаций можно считать, что работа внешних сил полностью переходит в потенциальную энергию деформации, т. е. w = U, где w — работа внешней силы, U — потенциальная энергия деформации.

Приложим к стержню (рис. 18, а) растягивающую силу F, медленно возрастающую от нуля до конечного значения. До определенных пределов нагружения между приложенной внешней нагрузкой и вызванным ею удлинением стержня существует линейная зависимость (рис. 18, б).

Схема к определению потенциальной энергии деформации

Рис. 18. Схема к определению потенциальной энергии деформации: а) расчетная схема энергии деформации; б) линейный закон сопротивления

Сила F будет производить работу на перемещении ебм, произведенную текущей силой F на элементарном перемещении
Энергия системы при растяжении и сжатии

Для определения полной работы, которую совершает переменная сила F на перемещении Д/, проинтегрируем выражение (26):

Читайте также:  При растяжении ноги надо

Энергия системы при растяжении и сжатии

Исходя из геометрического смысла интеграла, можно сказать, что применительно к рассматриваемому случаю, работа силы F на перемещении, равном А/, будет численно равна площади заштрихованного треугольника и определится по формуле

Энергия системы при растяжении и сжатии

Выразим перемещение 6- Д/ через внешнюю силу F:

Энергия системы при растяжении и сжатии

Подставив это выражение в (27), получим

Энергия системы при растяжении и сжатии

Для однородного стержня N-F, тогда

Энергия системы при растяжении и сжатии

В некоторых задачах, для того чтобы исключить влияние размеров, вводят понятие удельной потенциальной энергии и. Под удельной потенциальной энергией понимается энергия, отнесенная к единице первоначального объема стержня: и = U/V0, где Уо — начальный объем стержня.

Подставив в последнюю формулу V0 = А I и выражение (28) для потенциальной энергии, получим
Энергия системы при растяжении и сжатии

Единицей энергии в системе СИ является джоуль (Дж), единицей удельной энергии деформации будет джоуль на кубический метр (Дж/м3).

Потенциальная энергия деформации широко применяется в расчетной практике.

Рассмотрим примеры решения задач на растяжение — сжатие.

Пример 3. Стальная тяга длиной / = 8 м и площадью поперечного сечения А = 8 см2 под действием растягивающей нагрузки получила абсолютное удлинение Д/ = 5,7 мм. Определить величину нагрузки F и напряжения о, если известно, что модуль продольной упругости материала тяги Е= 2-106 МПа.

Решение

Находим относительное удлинение:

Энергия системы при растяжении и сжатии

Пользуясь законом Гука, определим величину напряжения:

Энергия системы при растяжении и сжатии

Определим величину нагрузки:

Энергия системы при растяжении и сжатии

Пример 4. Определить напряжение, возникающее в поперечном сечении стального стержня, его абсолютное Д/ и относительное в удлинения, если диаметр d= 40 мм, длина / = 1,5 м, растягиваемая сила F = 100 кН, модуль упругости материала стержня Е- 2-106 МПа.

Решение

Вычислим напряжение:

Энергия системы при растяжении и сжатии

Находим абсолютное удлинение:
Энергия системы при растяжении и сжатии

Определяем относительное удлинение:

Энергия системы при растяжении и сжатии

Пример 5. Проверить прочность заданного стального стержня (рис. 19, а) площадью поперечного сечения А= 5 см2 и определить перемещения сечений С-С и D-D если F = 70 кН, /*2= 120 кН, [а]= 150 МПа.

Расчет на прочность консольного стержня

Рис. 19. Расчет на прочность консольного стержня: а) расчетная схема стержня; б) эпюра продольных сил

Решение

Стержень имеет два участка длинами 5а и , в пределах каждого из которых продольная сила постоянна; границей участков служит место приложения силы F2.

Применяя метод сечений, определяем значение продольной силы A^i в пределах первого (правого) участка:

ЛГ,= F,=70 кН .

Этот участок испытывает растяжение, и величину считаем положительной.

В сечениях второго участка
Энергия системы при растяжении и сжатии

Этот участок испытывает сжатие, и величину Mi при построении эпюры N считаем отрицательной. Эпюра продольных сил показана на рис. 19, б.

Определяем нормальные напряжения на первом и втором участках:

Энергия системы при растяжении и сжатии

В пределах каждого из участков напряжения постоянны.

Так как в нашем случае сечение стержня постоянно по всей длине, то эпюра а будет подобна эпюре N и будет отличаться от нее только масштабом, поэтому в данном случае имеет смысл построить лишь одну эпюру N.

Для расчета на прочность интерес представляет то сечение, в котором возникают наибольшие напряжения, это сечение и подлежит проверке на прочность:

Энергия системы при растяжении и сжатии

Таким образом, прочность данного стержня достаточная.

Теперь приступим к определению перемещений указанных сечений. Известно, что перемещение в заделке сечения В-В Д/В-в = 0. Перемещение какого-либо поперечного сечения стержня равно изменению длины (удлинению или укорочению) части стержня, заключенной между рассматриваемым сечением и заделкой. Так, в частности, перемещение сечения С-С относительно неподвижного сечения В-В равно укорочению участка стержня длиной 2а и сечение С-С, очевидно, переместится влево на величину

Энергия системы при растяжении и сжатии

Для определения перемещения сечения D-D относительно неподвижного сечения В-В надо алгебраически просуммировать изменения длин первого и второго участков стержня. Условно примем перемещения вправо, соответствующие удлинению,

положительными, тогда

Энергия системы при растяжении и сжатии

Перемещение сечения D-D, очевидно, равно полному изменению длины стержня. Таким образом стержень удлиняется, и сечение D-D перемещается вправо на 0,5 мм.

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

Читайте также:  Растяжение связок кисти руки перевязка

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Энергия системы при растяжении и сжатии

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник