Эквивалентное напряжение при растяжении

Эквивалентное напряжение при растяжении thumbnail

Первая теория прочности — теория наибольших нормальных напряжений. Впервые эта теория прочности была предложена Г. Ламе в 1830 г., дальнейшее развитие получила в работах Рэнкина.

По первой теории прочности считают, что в любом сложном напряженном состоянии элемента конструкции предельное состояние достигается тогда, когда наибольшее по величине главное напряжение данного направления достигает опасного значения, т. е. предела прочности о„для хрупких материалов или предела текучести от- для пластичных материалов.

Критерий наибольших нормальных напряжений из трех главных напряжений учитывает только одно — наибольшее, полагая, что два других не влияют на прочность.

Условие прочности согласно первой теории прочности следующее:

Эквивалентное напряжение при растяжении

где [ор] — допускаемое напряжение при растяжении, [ос] — допускаемое напряжение при сжатии.

Согласно первой теории, на прочность влияет лишь одно из главных напряжений, остальные два главных напряжения во внимание не принимаются. Опытная проверка показала неприменимость теории наибольших нормальных напряжений для большинства материалов.

Вторая теория прочности — теория наибольших линейных деформаций. Вторая теория прочности была предложена Сен— Венаном.

Данная теория предполагает, что нарушение прочности в общем случае напряженного состояния наступает тогда, когда наибольшая линейная деформация етах достигает своего максимального значения.

Условие прочности, согласно второй теории прочности, принимает вид

Эквивалентное напряжение при растяжении

Данная теория получила широкое распространение в XIX — начале XX вв. в силу бурного развития науки и техники и в то же время невозможности проведения опытной проверки. В дальнейшем опытная проверка показала неприменимость теории наибольших удлинений для большинства материалов и посредственные результаты для хрупких материалов.

Рассмотрим критерии эквивалентности по трем гипотезам прочности, наиболее широко применяемым в современной расчетной практике, и приведем зависимости для вычисления эквивалентных напряжений.

Третья теория прочности — теория наибольших касательных напряжений. Была предложена в 1773 г. Ш. Кулоном, подтверждена опытами Треска (1868-1872) и И. Баушингера (1874). Согласно этой гипотезе, два напряженных состояния равно- опасны, если максимальные касательные напряжения для них одинаковы.

Сформулированное условие, в частности, означает, что максимальные касательные напряжения для заданного напряженного состояния и эквивалентного ему одноосного растяжения одинаковы, т. е.

Эквивалентное напряжение при растяжении

Для заданного напряженного состояния

Эквивалентное напряжение при растяжении

Для эквивалентного одноосного растяжения

Эквивалентное напряжение при растяжении

Учитывая, что рассматриваемую гипотезу часто называют третьей теорией прочности, будем обозначать эквивалентное напряжение tr“’, с тем чтобы по этому обозначению без дополнительных пояснений было ясно, по какой гипотезе определяется эквивалентное напряжение.

NB: в настоящее время первая и вторая теории прочности почти не применяются.

Приравнивая w и тБ получаем:

Эквивалентное напряжение при растяжении

Очевидным недостатком этой гипотезы является пренебрежение влиянием промежуточного главного напряжения аг.

Тщательно поставленные опыты показали, что для пластичных материалов эта гипотеза дает удовлетворительное совпадение экспериментальных данных с теоретическими расчетами. Ошибка от пренебрежения влиянием ст2 не превышает 10-15%.

Для бруса в сопротивлении материалов третья теория прочности может быть представлена следующим выражением:

Эквивалентное напряжение при растяжении

Условие прочности

Эквивалентное напряжение при растяжении

Теория наибольших касательных напряжений не учитывает второго главного напряжения, что, по имеющимся данным, может давать ошибку до 12%. Однако опытная проверка показала, что эта теория дает хорошие результаты для пластичных материалов, одинаково сопротивляющихся растяжению и сжатию, при плоском растяжении или сжатии или при смешанном напряженном состоянии. Для хрупких состояний материалов она не применима.

Четвертая теория прочности — теория удельной потенциальной энергии изменения формы. Данная теория была впервые предложена в 1904 г. Губером и получила дальнейшее развитие в работах Мизеса и Генки (1913).

Согласно этой теории, два напряженных состояния равноопасны, если удельная потенциальная энергия изменения формы для них одинакова. Эта теория основана на том, что разрушение, особенно при пластическом поведении, связано исключительно с энергией формоизменения, а энергия изменения объема не оказывает на разрушение никакого влияния.

Формула для определения эквивалентного напряжения по рассматриваемой гипотезе

Эквивалентное напряжение при растяжении

Эта теория хорошо согласуется с опытными данными для пластичных материалов. Для них она точнее, чем гипотеза наибольших касательных напряжений. Согласно энергетической теории прочности, условие эквивалентности определяется значениями всех трех главных напряжений.

Для бруса в рамках сопротивления материалов эквивалентное напряжение может быть определено следующим образом:

Эквивалентное напряжение при растяжении

Условие прочности

Читайте также:  Признаки растяжения цепи грм ниссан икстрейл

Эквивалентное напряжение при растяжении

Итак, теория удельной потенциальной энергии формоизменения среди всех гипотез дает наилучшее соответствие с опытными данными. Данная теория, как и теория наибольших касательных напряжений, применима при тех же видах напряженных состояний и только для пластичных материалов, одинаково сопротивляющихся растяжению и сжатию.

Пятая теория прочности — теория О. Мора. В формулировке теории Мора нарушение прочности происходит тогда, когда на некоторой площадке осуществляется наиболее неблагоприятная комбинация нормального и касательного напряжений. Вопрос о характере разрушения остается открытым. В зависимости от того, какой будет эта неблагоприятная комбинация, речь может идти о наступлении текучести или о разрушении в прямом смысле слова.

Эквивалентные напряжения определяются по формуле

Эквивалентное напряжение при растяжении

где коэффициент к представляет собой отношение предельных напряжений при одноосных растяжении и сжатии для хрупких материалов:
Эквивалентное напряжение при растяжении

Отсюда вытекает следующая формула для эквивалентного напряжения

Эквивалентное напряжение при растяжении

Для пластичных материалов к = 1, и в этом случае запись условия прочности оказывается тождественной формуле (143),

_m_ v т. е. Е -оЕ .

Условие разрушения: сгг = р

Условие текучести: Ое= оу= С- 3, где к^= етт р/ сгтс.

Значение к для алюминия — 0,86; для закаленной стали 0,4- 0,5; для литейного чугуна — 0,3; для зеркального чугуна — 0,1.

NB: индекс «V» связан с тем, что эту гипотезу иногда называют пятой теорией прочности.

Гипотеза (теория) Мора охватывает разные по своей физической сущности условия разрушения. Она является универсальной, так как применяется для пластичных и хрупких материалов, т. е. для всех, хорошо подтверждается опытами, имеет в будущем перспективу уточнения.

Пример 30. Сравнить опасность двух напряженных состояний (рис. 96). Механические характеристики материалов имеют

следующие значения: для первого элемента ъ{вр = 120 МПа,

°в.с = 360 МПа; для второго элемента °в.р- 180 МПа, ®в.с~ 420 МПа.

Решение

По условию механические характеристики материалов сравниваемых элементов различны, поэтому сопоставление значений эквивалентных напряжений лишено смысла. Сравнивать надо коэффициенты запаса прочности, конечно, применяя в том и другом случае одну и ту же теорию прочности. Так как в обоих случаях материал хрупкий (это следует из заданных значений механических характеристик), то расчет выполним по теории Мора.

Два вида напряженных состояний

Рис. 96. Два вида напряженных состояний

Для первого элемента (точки) главные напряжения имеют следующие значения:

= 40 МПа, о[ = 20 МПа, = — 100 МПа.

Эквивалентное напряжение для первого элемента:

Эквивалентное напряжение при растяжении

/ а*Р >20

Коэффициент запаса прочности п ~ v-тзт-1’ •

°Е

Для второго элемента (точки) главные напряжения имеют следующие значения:

Эквивалентное напряжение при растяжении

Тогда эквивалентное напряжение для второго элемента:
Эквивалентное напряжение при растяжении Коэффициент запаса прочности

Эквивалентное напряжение при растяжении

Таким образом, rl > п», следовательно, второе из заданных напряженных состояний опаснее.

Пример 31. Стальной вал круглого поперечного сечения передает мощность N=14,7 кВт при угловой скорости со = 10,5 рад/с. Величина наибольшего изгибающего момента, действующего на вал. составляет 1,5 кН-м. Исходя из условий прочности, по третьей и четвертой теориям прочности, определить необходимый диаметр вала, если [а] = 80 МПа.

Решение

Условие прочности при одновременном действии изгиба и кручения по третьей гипотезе прочности:
Эквивалентное напряжение при растяжении

или
Эквивалентное напряжение при растяжении

Находим величину передаваемого валом крутящего момента:

Эквивалентное напряжение при растяжении

Эквивалентный момент по третьей гипотезе прочности

равен

Эквивалентное напряжение при растяжении

а диаметр вала

Эквивалентное напряжение при растяжении

Условие прочности при одновременном действии изгиба и кручения по четвертой гипотезе прочности

Эквивалентное напряжение при растяжении

или
Эквивалентное напряжение при растяжении

Эквивалентный момент по четвертой гипотезе прочности

равен

Эквивалентное напряжение при растяжении

а диаметр вала
Эквивалентное напряжение при растяжении

Вывод: таким образом, расчет по энергетической теории прочности дал более экономичный размер сечения, чем по критерию наибольших касательных напряжений.

Источник

Сущность критериев прочности состоит в замене трехосного напряженного состояния эквивалентным линейнымравноопасным заданному.

В основе вывода каждого критерия прочности и условия прочности применительно к сложным напряженным состояниям лежит соответствующаягипотеза опричине достижения предельного состояния (разрушения) в твердом деформируемом теле, по существу, об условии равнопрочности напряженных состояний.

Согласно критерию наибольших нормальных напряжений условие прочности имеет вид

где σadm или [σ] – это допускаемое напряжение)

или

В соответствии с критериями наибольших линейных деформаций условие прочности записывается следующим образом

На основании критерия наибольших касательных напряжений условие прочности представляется в виде

Согласно энергетическому критерию условие прочности имеет вид

Читайте также:  Растяжение мышц грудной клетки мкб

По теории Мора условие прочности записывается следующим образом

Эквивалентное напряжение – это воображаемая условная расчетная величина, а не какое-то реально возникающее напряжение. Значение эквивалентного напряжения зависит не только от заданного типа напряженного состояния (значений соответствующих ему главных напряжений), но и от принятого для расчета прочности критерия эквивалентности напряженного состояния. Поэтому нельзя говорить, что эквивалентное напряжение возникает в некоторой точке. Следует говорить об определении эквивалентного напряжения для исследуемой точки.

Эквивалентное напряжение – напряжение, которое следует создать в растянутом образце, чтобы его напряженное состояние стало равноопасным заданному напряженному состоянию.

Заменяя сложное напряженное состояние эквивалентным линейным, получаем возможность использовать при сложном напряженном состоянии условие прочности при простом растяжении:

.

Установлено, что в каждой точке нагруженного тела, в общем случае действует три главных напряжения.

Опыт показывает, что поведение материалов, т. е. начало стадии пластических деформаций и характер разрушения (хрупкий, вязкий), зависят от величины, знака и соотношения главных напряжений.

Поэтому, чтобы судить о прочности материала при сложном напряженном состоянии, нужно предварительно знать — в какой момент при той или иной комбинации главных напряжений наступает опасное состояние материала.

При простом напряженном состоянии ответ на этот вопрос дают диаграммы растяжения или сжатия. Предельными напряжениями считаются такие, при которых хрупкий материал разрушается, а пластичный материал получает недопустимо большие пластические деформации.

При сложном напряженном состоянии решение этой задачи значительно сложнее, т. к. число различных сочетаний из главных напряжений неограниченно велико, а опыт технически очень сложен.

Вследствие этого при составлении условий прочности материала при сложном напряженном состоянии мы можем располагать только допускаемыми напряжениями, установленными по результатам испытаний на простое растяжение или сжатие.

В связи с этим возникает задача: зная максимально допустимые безопасные напряжения при простом растяжении, найти эквивалентную, т. е. равно безопасную комбинацию из главных напряжений при сложном напряженном состоянии.

Единственным практическим путем решения этой задачи является установление общих критериев разрушения, которые позволили бы оценить опасность перехода материала в предельное состояние при сложном напряженном состоянии, используя лишь данные опытов на растяжение.

Критерии разрушения или гипотезы прочности представляют собой предположения о преимущественном влиянии на прочность материалов того или иного фактора, сопутствующего процессу деформации и разрушения материалов.

Наиболее важными факторами, связанными с возникновением опасного состояния материала, являются: нормальные и касательные напряжения, линейные деформации и потенциальная энергия деформации.

Который из этих факторов является главной причиной разрушения установить не удается, т. к. невозможно наблюдать действие какого-нибудь одного фактора изолированно от остальных.

При сложном напряженном состоянии следует говорить не о предельном напряжении, а о предельном напряженном состоянии. В качестве предельного состояния в опасной точке детали принимается переход материала в окрестности данной точки из упругого состояния в пластическое или разрушение детали, выражающееся в образовании трещин.

Условимся рассматривать такие случаи напряженного состояния, когда все нагрузки возрастают пропорционально некоторому параметру, вплоть до наступления предельного напряженного состояния. При этом главные напряжения также возрастают пропорционально.

Коэффициентом запаса прочности при сложном напряженном состоянииназывается число, на которое следует умножить все компоненты тензора напряжений (или s1, s2, s3), чтобы данное напряженное состояние стало предельным.

Равноопасными называются такие напряженные состояния, для которых коэффициенты запаса прочности равны.

Это дает возможность сравнивать все напряженные состояния между собой, заменяя их равноопасным одноосным напряженным состоянием (растяжением).

Эквивалентным напряжением называется напряжение, которое следует создать в растянутом образце, чтобы его напряженное состояние стало равноопаснымзаданному напряженному состоянию (рис. 9.1).

Рис. 9.1.

Заменяя сложное напряженное состояние эквивалентным растяжением, получаем возможность использовать при сложном напряженном состоянии условие прочности при простом растяжении:

. (9.1)

Условие наступления предельного состояния имеет следующий вид:

13. Теория максимальных нормальных напряжений. Теория максимальных линейных деформаций.

Источник

Работа

Гипотезы прочности указывают критерии эквивалентности различных напряженных состояний.

Применение гипотез прочности избавляет от необходимости проведения огромного количества экспериментов. Тот или иной критерий эквивалентности может быть основой для практических расчетов на прочность лишь при условии, что для ряда частных случаев он проверен опытным путем, и результаты эксперимента оказались достаточно близки к результатам теоретического расчета.

Читайте также:  Аппарат для растяжения руки

Определение истинной причины разрушения материала является труднейшей задачей. Это обстоятельство не позволяет создать единую общую гипотезу прочности и повлекло за собой появление многих теорий, каждая из которых основывается на своей гипотезе о причине разрушения материала.

Независимо от принятой гипотезы прочности, условие прочности после определения эквивалентного напряжения представляется в виде одного из неравенств: изображение гипотезы прочности сопроматили, при заданном коэффициенте запаса,изображение гипотезы прочности сопромат

Исторически первая гипотеза прочности — наибольших нормальных напряжений

Первая гипотеза прочности основывается на предположении, что причиной разрушения материала являются наибольшие по абсолютному значению нормальные напряжения.

Обычно первую гипотезу прочности, предложенную Галилеем, называют гипотезой наибольших нормальных напряжений.

Условие прочности по первой гипотезе прочности: изображение гипотезы прочности сопромат.

Если наибольшим по значению будет сжимающее главное напряжение изображение гипотезы прочности сопромат, условие прочности по первой гипотезе прочности: изображение гипотезы прочности сопромат.

Существенный недостаток первой гипотезы прочности: при определении эквивалентного напряжения совершенно не учитываются два других главных напряжения, оказывающих влияние на прочность материала.

Первая гипотеза прочности подтверждается экспериментальными данными только для хрупкого материала при растяжении, когда напряжения изображение гипотезы прочности сопроматзначительно меньше изображение гипотезы прочности сопромат.

При всестороннем сжатии, например, цементного кубика, первая гипотеза прочности приводит к ошибочным результатам, поскольку кубик выдерживает напряжения, во много раз превышающие предел прочности при одноосном сжатии.

В настоящее время первая гипотеза прочности не применяется и имеет лишь историческое значение.

Вторая гипотеза прочности — наибольших линейных деформаций

Недостатки первой гипотезы прочности привели к появлению второй гипотезы прочности, предложенной Мариоттом и развитой Сен-Венаном.

Согласно второй гипотезе прочности, называемой гипотезой наибольших линейных деформаций, причиной разрушения являются наибольшие линейные деформации. Эквивалентные напряжения вычисляются по формуле изображение гипотезы прочности сопромат, где изображение гипотезы прочности сопромат– коэффициент Пуассона.

Считается, что для пластичных материалов закон Гука выполняется вплоть до предела текучести, а для хрупких – до предела прочности, что является грубым допущением.

Достоинством второй гипотезы прочности является то, что при вычислении эквивалентного напряжения она учитывает все три главных напряжения.

С помощью гипотезы наибольших линейных деформаций можно объяснить разрушение хрупких материалов при простом сжатии. Однако вторая гипотеза прочности недостаточно подтверждается опытами и не применяется.

Третья гипотеза прочности – наибольших касательных напряжений

Согласно третьей гипотезе прочности наибольших касательных напряжений, причиной разрушения материала являются наибольшие Касательные напряжения. Максимальное касательное напряжение для заданного объемного напряженного состояния и эквивалентного ему линейного напряженного состояния одинаковы: изображение гипотезы прочности сопромат.

Формула наибольшего касательного напряжения при объемном напряженном состоянии: изображение гипотезы прочности сопромат. Эквивалентное напряжение при одноосном растяжении: изображение гипотезы прочности сопромат.

Условие прочности по третьей гипотезе прочности:

изображение гипотезы прочности сопромат

Третья гипотеза прочности не учитывает второго главного напряжения (изображение гипотезы прочности сопромат). Однако, опыты показывают, что для пластичных материалов гипотеза наибольших касательных напряжений дает удовлетворительные результаты. Ошибка от пренебрежения влиянием изображение гипотезы прочности сопроматне превышает 10 – 15 %.

Четвертая гипотеза прочности — энергетическая

Четвертая (энергетическая) гипотеза прочности: количество удельной потенциальной энергии изменения формы, накопленной к моменту наступления предельного состояния материала, одинаково как при сложном напряженном состоянии, так и при простом одноосном растяжении.

В четвертой гипотезе прочности речь идет не обо всей удельной потенциальной энергии деформации, а лишь ее части, которая накапливается за счет изменения формы кубика с ребром равным единице.

В общем случае полная удельная потенциальная энергия деформации может быть представлена как сумма энергий, связанных с изменением объема кубика и изменением его формы.

Условие прочности по четвертой гипотезе прочности:

изображение гипотезы прочности сопромат

Достоинство четвертой гипотезы прочности: эквивалентное напряжение определяется значениями всех трех главных напряжений.

Энергетическая гипотеза прочности согласуется с опытными данными для пластичных материалов.

Гипотеза прочности Мора

Согласно гипотезе прочности Мора, предложенной Отто Мором, два напряженных состояния равноопасны, если для соответствующих главных напряжений изображение гипотезы прочности сопромати изображение гипотезы прочности сопроматсоблюдается соотношение: изображение гипотезы прочности сопромат.

Условие прочности по гипотезе прочности Мора: изображение гипотезы прочности сопромат

Гипотеза прочности Мора не учитывает влияния второго главного напряжения (изображение гипотезы прочности сопромат).

Коэффициент изображение гипотезы прочности сопроматпредставляет собой отношение предельных напряжений, соответствующих одноосным растяжению и сжатию, который равен для хрупких материалов: изображение гипотезы прочности сопромат, для пластичных: изображение гипотезы прочности сопромат.

Гипотеза прочности Мора рекомендуется для хрупких материалов. Для пластичных материалов гипотеза прочности Мора тождественна третьей гипотезе прочности.

Источник