Изучение упругой деформации растяжения

Цель работы: определение модуля Юнга и коэффициента Пуассона для резины; проверка закона Гука.

Теоретическое введение

Жидкости сопротивляются изменению их объема, но не сопротивляются изменению формы. С этим свойством связан характерный для жидкостей закон Паскаля: передаваемое жидкостью во все стороны давление одинаково.

Твердые же тела сопротивляются как изменению объема, так и изменению формы; они сопротивляются, как говорят, любому деформированию. Для твердых тел не справедлив закон Паскаля. Передаваемое твердым телом давление различно в разных направлениях. Давления, возникающие в твердом теле при его деформировании, называются напряжениями. В отличие от давления в жидкости, упругие напряжения в твердом теле могут иметь любые направления по отношению к площадке, на которую действуют силы. Но при всем разнообразии деформации твердых тел оказывается возможным любую деформацию тела свести к двум основным типам, которые поэтому называют элементарными деформациями. Ими являются растяжение (сжатие) и сдвиг. Любые другие типы деформаций (изгиб, кручение, …) можно представить как комбинацию деформаций растяжения и сдвига.

В данной работе изучаются величины, характеризующие упругую деформацию растяжения. Пусть на цилиндр первоначальной длины и диаметра действует растягивающая сила (рис. 14.1). При этом образец увеличивает свою длину на , – абсолютное удлинение. Величину

(14.1)

называют относительным удлинением (относительной деформацией). При растяжении , при сжатии . При однородном растяжении величина во всех точках тела одинакова.

Отношение силы к величине сечения , на которое она действует, называется механическим напряжением в данном сечении:

. (14.2)

Опыт показывает, что при малых деформациях, при малых относительных удлинениях для цилиндров разного сечения и длины , но сделанных из одного и того же материала, выполняется закон Гука: напряжения пропорциональны деформации:

, (14.3)

где – коэффициент пропорциональности, зависящий от свойств материала цилиндра, но не зависящей от его размеров. Он называется модулем упругости или модулем Юнга данного материала. Из (14.1), (14.2) и (14.3) можно получить закон Гука в школьной формулировке:

, или ; (14.4)

при этом коэффициент жёсткости зависит как от свойств материала, так и от длины и сечения образца.

Если с прекращением действия вызвавших деформацию внешних сил тело возвращается в исходное недеформированное состояние, то деформации называются упругими. Деформации будут упругими, если они достаточно малы.

Модуль Юнга, однако, еще не характеризует полностью упругие свойства тела. Это видно и из рисунка 14.1: продольное растяжение цилиндра связано с сокращением его поперечных размеров: удлиняясь, цилиндр одновременно становится более тонким. Характеристикой этого изменения является относительное поперечное сжатие

(14.5)

где – абсолютное поперечное сжатие. При растяжении , при сжатии .

Очевидно, что величина также пропорциональна растягивающему напряжению , и тем самым она пропорциональна и величине относительного удлинения . Вводится соотношение, называемое коэффициентом Пуассона:

. (14.6)

Коэффициент Пуассона , как и модуль Юнга , не зависит от размеров тела и является константой, характеризующей свойства вещества. Можно показать из общих требований механической устойчивости твердого тела, что значение коэффициента Пуассона меняется в пределах от 0 до 0.5. Значение достигается у пористых тел (например, у пробки), не меняющих при растяжении своих поперечных размеров. Близкие к 0.5 значения достигаются у таких тел, как резина, которые значительно легче поддаются изменению своей формы, чем изменению своего объема.

Таким образом, упругие свойства твердого тела характеризуются двумя величинами: и .

Отметим, что в наших рассуждениях мы подразумеваем, что твердое вещество изотропно – свойства его одинаковы во всех направлениях. Упругие свойства анизотропных тел – монокристаллов – характеризуются большим числом упругих постоянных (не 2, а 21 – в самом общем случае).

Упругие деформации, по определению, исчезают после снятия вызывающих их напряжений (абсолютно упругое тело). Конечно, реальные твердые тела вовсе не обладают этой способностью в полной мере. Только пока деформации тела не превосходят известных пределов, оно восстанавливает свою форму, и то лишь с известной степенью точности. Минимальное механическое напряжение, при котором реальные тела ведут себя приблизительно как тела абсолютно упругие, называется пределом упругости. Различные тела обладают различным пределом упругости, но для всех тел существует такое напряжение, что после снятия нагрузки тело уже не возвращается к исходному состоянию и сохраняет в заметной степени измененную форму. Такие деформации называются остаточными или пластическими.

Рассматривать тела как абсолютно упругие имеет смысл только при условии, что деформации тел заведомо не достигают предела упругости. При малых и медленных деформациях многие реальные твердые тела можно считать абсолютно упругими. Вопрос о том, как малы и медленны должны быть деформации, чтобы данное реальное тело можно было рассматривать как абсолютно упругое, должен быть решен на опыте путем изучения поведения тел при различных величинах деформаций.

Читайте также:  Растяжение это простой вид сопротивления

Для этой цели применяются специальные машины, в которых образцы испытуемого материала подвергаются различным деформациям. Результаты испытаний материалов представляют в виде графиков, изображающих связь между деформациями образца и напряжениями (силами), в нем возникающими (рис.14.2). Как видно из рисунка 14.2, при малых деформациях напряжение пропорционально деформации: (участок 0-1). Это область область пропорциональности. Максимальное напряжение, при котором выполняется закон Гука, называется пределом пропорциональности. Далее напряжения растут медленнее, чем деформации (1-3 на рис.14.2). В этой области и лежит предел упругости тела. Точного определения предела упругости дать вообще невозможно, так как малые остаточные деформации наблюдаются всегда. Пределом упругости можно считать такое наибольшее механическое напряжение, после снятия которого остаточные деформации невелики (они не превышают некоторой определенной условно выбранной доли от наибольшей деформации, которой подвергается образец, например, 0.001%). Предел упругости лежит обычно близко за пределом пропорциональности . Дальше начинается область текучести участок 3-4 на рис.14.2). Под действием напряжения, равного пределу текучести , тело непрерывно увеличивает свою деформацию без увеличения нагрузки; оно будет течь как жидкость. При еще больших деформациях наступает разрушение (точка 5). Предел прочности – минимальное напряжение, при котором начинается разрушение тела.

Область упругих деформаций в большинстве применяемых на практике материалов очень незначительна (например, для стали пределу упругости соответствует значение ). Поэтому наибольшие деформации, которые может выдержать данный материал без разрушения, определяются главным образом величиной области текучести. Материалы, для которых эта область мала, способны выдерживать без разрушения только малые деформации – это хрупкие материалы. Те же, которые способны без разрушения выдерживать большие деформации – вязкие материалы. Например, чугун и сталь имеют примерно одинаковую область упругих деформаций и примерно одинаково ведут себя в этой области – они в одинаковой степени упругие. Но область текучести у чугуна гораздо меньше, чем у стали, поэтому он гораздо более хрупок.

Экспериментальная часть

Приборы и оборудование: лабораторная установка, набор грузов (гирь).



Источник

Цель работы – изучение зависимости величины деформации твердого тела от напряжения при деформации растяжения.

Идея эксперимента

В эксперименте подвергается растяжению металлическая проволока. Точное измерение величины деформации в зависимости от нагрузки позволяет установить основные закономерности и характеристики деформации растяжения.

Теоретическая часть

Рис. 13.

Все реальные тела деформируемы. Под действием приложенных сил они меняют свою форму или объем. Такие изменения называются деформациями. В случае твердых тел различают два предельных случая: деформации упругие и деформации пластические. Упругими называются деформации, исчезающие после прекращения действия приложенных сил. Пластическими или остаточными деформациями называют такие деформации, которые сохраняются в теле, по крайней мере, частично, и после прекращения действия внешних приложенных сил. Является ли деформация упругой или пластической – это зависит не только от материала тела, но и от величины приложенных сил. Если сила (точнее, сила, отнесенная к единице площади, т.е. напряжение) не превосходит известной величины, называемой пределом упругости, то возникающая деформация будет упругой. Если же она превосходит этот предел, то возникающая деформация будет пластической. Разделение тел на упругие и пластические в какой-то степени условно. Строго говоря, все деформации после прекращения действия внешних сил исчезают не полностью, а потому являются пластическими.

Различные части деформированного тела взаимодействуют между собой на поверхностях раздела, вдоль которых они граничат между собой. Рассмотрим произвольное деформированное тело или среду. Мысленно разделим его две части: тело I и тело II, граничащие между собой вдоль поверхности АВ (рис. 13). Т.к. тело I деформировано, то оно действует на тело II с некоторой силой. Соответственно тело II действует на тело I с такой же, но противоположно направленной силой. Однако для определения возникающих при этом деформаций необходимо знать как эти силы распределены по сечению. Возьмем на поверхности АВ бесконечно малую площадку dS. Пусть – сила, с которой на этой площадке тело II действует на тело I. Сила, отнесенная к единице площади, т.е. , называется напряжением, действующим в точке на границе АВ. Ориентацию площадки dS можно задать, указав направление нормали к ней. Будем считать, что нормаль направлена наружу от поверхности тела, на которое действует сила . Обозначим единичный вектор такой нормали, а – соответствующее напряжение. Вектор можно разложить на составляющую вдоль нормали n и составляющую, лежащую в касательной плоскости к площадке dS. Первая составляющая называется нормальным, а вторая – тангенциальным напряжениями, действующими на площадке dS.

Рис. 14.

Возьмем однородный стержень и приложим к его основаниям растягивающие или сжимающие силы F (рис. 14, а и б). Стержень будет деформирован, т.е. сжат или растянут. Сила, отнесенная к единице площади поперечного сечения, называется напряжением. В данном случае напряжение перпендикулярно к поперечному сечению стержня. Если стержень растянут, то это напряжение называется натяжением и определяется выражением

Читайте также:  Лечение растяжения ушиба связок голеностопа

,

где S – площадь поперечного сечения стержня. Если же стержень сжат, то напряжение называется давлением и численно определяется той же формулой

.

Легко заметить, что .

Пусть l0 – длина недеформированного стержня. После приложения силы F его длина получает приращение Δl и становится равной l = l0 + Δl. Отношение

называется относительным удлинением стержня. В случае растяжения оно положительно, при сжатии – отрицательно.

Как показывает опыт, для не слишком больших упругих деформаций натяжение Т (или давление Р) пропорционально относительному удлинению (или относительному сжатию).

или ,

где Е – постоянная, зависящая только от материала стержня и его физического состояния. Она называется модулем Юнга. Последние формулы выражают закон Гука для деформаций растяжения или сжатия стержней. Это приближенный закон и для больших деформаций он может не выполняться. Деформации, для которых закон Гука приближенно выполняется, называются малыми деформациями. Более общим, чем закон Гука, является утверждение, что в случае упругих деформаций натяжение Т является однозначной функцией относительного удлинения ε.

Оказывается, что если деформации малы, то упругие постоянные тел не изменяются при деформациях. Таким образом, если на тело действует несколько сил, то для вычисления результирующей деформации можно вычислить сначала деформации, вызываемые каждой силой в отдельности (как если бы остальных сил не было совсем), а затем полученные деформации сложить. Это положение называется принципом суперпозиции малых деформаций.

Упругая энергия растянутого стержня равна

.

Объемная плотность упругой энергии, т.е. упругая энергия u, приходящаяся на единицу объема растянутого (или сжатого) стержня, равна

.

Если воспользоваться законом Гука, то это выражение можно привести к виду

.

Как показывает опыт, под действием растягивающей или сжимающей силы F изменяются не только продольные, но и поперечные размеры стержня. Если сила F – растягивающая, то поперечные размеры стержня уменьшаются. Если же она сжимающая, то они увеличиваются.

Пусть а0 – толщина стержня до деформации, а – после деформации. За толщину можно принять для круглого стержня его диаметр, для прямоугольного – одну из сторон его основания и т.д. Если сила F растягивающая, то величина называется относительным поперечным сжатием стержня (Δа = аа0). Отношение относительного поперечного сжатия к соответствующему относительному продольному удлинению называется коэффициентом Пуассона

.

Коэффициент Пуассона зависит только от материала тела и является одной из важных постоянных, характеризующих его упругие свойства.

Модуль Юнга Е и коэффициент Пуассона μ полностью характеризуют упругие свойства изотропного материала. Все остальные упругие постоянные могут быть выражены через Е и μ.

Таким образом, упругая деформация твердых тел описывается законом Гука

, (6.1)

где s = F/S – нормальное напряжение (отношение силы F, приложеннойперпендикулярно поперечному сечению образца, к площади S этого сечения),– относительная деформация (отношение удлинения Dl к первоначальной длине l0образца), Е – модуль упругости (модуль Юнга).Заметим, что s численно равно энергии, приходящейся на 1 м3 деформируемого материала.

Модуль Юнга характеризует упругие свойства твердых тел при деформации растяжения – сжатия. Он численно равен величине напряжения, которое вызывает изменение длины образца вдвое, если деформация при этом остается упругой. С другой стороны, модуль Юнга можно понимать как величину, численно равную объемной энергии деформации при удвоении размеров образца.

Закон Гука справедлив лишь для идеально упругих тел. Для реальных же тел наблюдаются различные отклонения от этого закона. На рис. 15 представлена характерная диаграмма растяжения твердого тела. Строгая пропорциональность между относительным удлинением и напряжением наблюдается лишь при сравнительно небольших нагрузках, на участке .

Рис. 15. Диаграмма растяжения твердого тела

Напряжение σп, при котором выполняется закон Гука, называется пределом пропорциональности.

Максимальное напряжение sуп, при котором еще не возникают остаточные деформации(относительная остаточная деформацияне превышает0,1 %), называется пределом упругости. Ему соответствует точка В на диаграмме деформации.

Предел текучести – это напряжение, которое характеризует такое состояние деформируемого тела, после которого удлинение возрастает без увеличения действующей силы (горизонтальный участок ВС).

Пределом прочности sпр (точка D) называется напряжение, соответствующее наибольшей нагрузке, выдерживаемой телом перед разрушением.

Отклонения от закона Гука в области напряжений, не превосходящих предела упругости, объединяются общим понятием неупругости. Проявлением неупругости являются, например, упругие последействия и упругий гистерезис, подлежащий экспериментальному наблюдению в данной работе.

Явление упругого последействия заключается в изменении со временем деформационного состояния при неизменной величине напряжения. В этом случае после приложения нагрузки к образцу деформация возникает не мгновенно, а продолжает увеличиваться с течением времени (прямое упругое последействие); также и после снятия нагрузки: деформация образца исчезает не мгновенно, а продолжает уменьшаться во времени (обратное упругое последействие).

Читайте также:  Если растяжение связок голеностопа симптомы

Площадь, ограниченная кривой нагрузки и двумя абсциссами, соответствующими двум значениям относительной деформации, пропорциональна работе А внешних сил или, что тоже, потенциальной энергии Еп при упругом деформировании образца. Это следует из расчета элемента площади DQ под кривой

, (6.2)

где с – коэффициент пропорциональности, DW1 – объемная плотность энергии деформации образца. Коэффициент пропорциональности с равен объемной плотности энергии деформации, приходящейся на единицу площади, ограниченной графиком, и имеет размерность Дж/клетку.

Площадь под всей кривой нагрузки соответствует объемная плотность энергии W1, а площади под всей кривой разгрузки – объемная плотность энергии W2.

Если к образцу прикладывать сначала возрастающее напряжение, а затем производить разгрузку, то на графике s = f(e) кривая нагрузки не будет совпадать с ветвью разгрузки. При полном цикле нагрузки – разгрузки график образует фигуру, называемую петлей гистерезиса. Площади петли пропорциональна объемная плотность поглощенной энергии упругости DW, перешедшей в тепло.

Явления необратимого превращения в теплоту механической энергии (иначе, диссипация энергии) в процессах деформирования твердых тел связано с так называемым внутренним трением.

Для количественной оценки внутреннего трения материалов часто пользуются относительной величиной – коэффициентом поглощения

, (6.3)

где W1 – энергия упругой деформации при нагрузке образца.

Явления неупругости присущи всем реальным твердым телам, как полимерным, так и низкомолекулярным, в том числе металлам.

Явления неупругости металлов и других кристаллических тел связаны с дефектами кристаллической решетки: различными точечными дефектами, дислокациями и вызванными ими неоднородностями структуры и, как следствие, наличием внутренних механических микронапряжений в твердых телах. Неупругость полимерных материалов обусловлена изменением структуры макромолекул под действием механических напряжений.

Экспериментальная установка

Рис. 16. Схема экспериментальной установки

Установка для наблюдения деформации растяжения представлена на рис. 16. Она состоит из массивного основания 1 с верхним 2 и нижним 3 кронштейнами. Испытуемый образец – проволока 4, закрепляется с помощью винтовых зажимов 5 и 6. К нижнему зажиму прикреплена платформа 7, на которую для создания нагрузки накладываются грузы. Для удобства закрепления проволоки верхний зажим сделан подвижным и может фиксироваться с помощью винта 8. Для того чтобы верхний кронштейн во время измерений находился под постоянной нагрузкой и имел постоянный изгиб, к нему на тягах 9 подвешена горизонтальная планка 10. На неё перед измерениями навешиваются все грузы, которые затем перекладываются на платформу. Прибор устанавливается (обычно крепится к стене) в вертикальном положении.

Для точного измерения величины деформации в работе применяется катетометр.

Катетометр предназначен для измерения вертикальных отрезков, расположенных на расстояниях

Рис. 17. Схематическое устройство катетометра.

несколько десятков сантиметров от объектива зрительной трубы катетометра.

Катетометр (рис. 17) состоит из вертикального штатива с колонкой 1 на треножнике, измерительной каретки 2, зрительной трубы 3 и отсчетного микроскопа 4. Подъемными винтами 5 треножника колонку можно устанавливать по круглому уровню строго вертикально. С помощью ручек 6 колонку можно поворачивать вокруг вертикальной оси. Измерительная каретка 2, несущая зрительную трубу 3 и отсчетный микроскоп 4, перемещается по колонке на роликах. Грубое перемещение каретки по вертикали осуществляется от руки при открепленном винте 7, точное – с помощью микрометрического винта 8 при закрепленном винте 7.

Зрительная труба 3 укреплена на каретке. Фокусировка трубы на выбранную точку объекта производится вращением маховика 9. Сбоку на тубусе имеется цилиндрический уровень, ось которого параллельна визирной оси трубы. Уровень устанавливается в горизонтальном положении микрометрическим винтом путем совмещения изображения концов пузырька, рассматриваемого через окуляр зрительной трубы. При совмещении половинок пузырька визирная ось зрительной трубы принимает строго горизонтальное положение.

Измерительная система катетометра состоит из зрительной трубы и отсчетного микроскопа с осветительной системой. В фокальной плоскости окуляра отсчетного микроскопа установлена масштабная сетка (рис. 18), на которую специальным оптическим устройством проектируется миллиметровая шкала. Измерение расстояний между двумя точками производится с помощью зрительной трубы и отсчетного микроскопа путем сравнения измеряемой длины с миллиметровой шкалой.

Перемещая каретку со зрительной трубой и отсчетным микроскопом по колонке вдоль миллиметровой шкалы, а также вращая колонку вокруг вертикальной оси, устанавливают трубу на выбранные точки объекта; отсчеты снимают через окуляр отсчетного микроскопа по шкале и масштабной сетке. Длины вертикальных отрезков определяют как разность соответствующих отсчетов по шкале.

Катетометр снабжен трансформатором для включения в сеть осветительной части отсчетного микроскопа.

Рекомендуемые страницы:

Читайте также:

Источник