Изменение длины тела при растяжении прямо

Изменение длины тела при растяжении прямо thumbnail

Глава 2. Взаимодействие тел

Вам уже известно, что на все тела, находящиеся на Земле, действует сила тяжести. В результате действия силы тяжести на Землю падает подброшенный камень, выпущенная из лука стрела, снежинки, листья, оторвавшиеся от веток, и др.

Возникновение силы упругости

На книгу, лежащую на столе, также действует сила тяжести, но книга не проваливается сквозь стол, а находится в покое. Подвесим тело на нити. Оно падать не будет.

Почему же покоятся тела, лежащие на опоре или подвешенные на нити? По-видимому, сила тяжести уравновешивается какой-то другой силой. Что же это за сила и как она возникает?

Проведём опыт. На середину горизонтально расположенной доски поставим гирю (рис. 64). Под действием силы тяжести гиря начнёт двигаться вниз и прогнёт доску, т. е. доска деформируется. При этом возникает сила, с которой опора (доска) действует на тело, расположенное на ней. Из этого опыта можно сделать вывод, что на гирю, кроме силы тяжести, направленной вертикально вниз, действует ещё какая-то другая сила. Эта сила направлена вертикально вверх. Она и уравновесила силу тяжести. Эту силу называют силой упругости.

  • Сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение, называется силой упругости.

Силу упругости обозначают буквой F с индексом: Fynp.

Изменение длины тела при растяжении прямо

Чем сильнее прогибается опора (доска), тем больше сила упругости. Если сила упругости становится равной силе тяжести, действующей на тело, прогибание доски прекращается.

Теперь подвесим тело на нити. Нить (подвес) растягивается (рис. 65). В нити (подвесе), также как и в опоре, возникает сила упругости. При растяжении подвеса сила упругости увеличивается. Если сила упругости будет равна силе тяжести, то растяжение прекращается. Сила упругости возникает только при деформации тел. Если исчезает деформация тела, то исчезает и сила упругости.

Деформации бывают разных видов: растяжения, сжатия (см. рис. 56), сдвига, изгиба (см. рис. 64), кручения.

Возникновение силы упругости
при деформации

Теперь попытаемся выяснить, от чего зависит сила упругости.

Английский учёный Роберт Гук, современник Ньютона, установил, как зависит сила упругости от деформации.

Рассмотрим опыт. Возьмём резиновый шнур. Один конец его закрепим в штативе (рис. 66). Первоначальная длина шнура к свободному концу шнура подвесить чашку с гирькой, то шнур удлинится. Его длина станет равной Изменение длины тела при растяжении прямо Удлинение шнура Изменение длины тела при растяжении прямо (Δ — греч. буква «дельта») можно найти так:

Изменение длины тела при растяжении прямо

Если менять гирьки на чашке, то будет меняться и длина шнура, а значит, его удлинение (деформация) Изменение длины тела при растяжении прямо.

Опыт показал, что изменение длины тела при растяжении (или сжатии) прямо пропорционально модулю силы упругости.

В этом и заключается закон Гука. Записывается закон Гука следующим образом:

Закон Гука.

где Изменение длины тела при растяжении прямо — удлинение тела (изменение его длины), k — коэффициент пропорциональности, который называется жёсткостью.

Жёсткость тела зависит от формы и размеров, а также от материала, из которого оно изготовлено.

Закон Гука справедлив только для упругой деформации. Если после прекращения действия сил, деформирующих тело, оно возвращается в исходное положение, то деформация является упругой.

Вопросы

1. Когда возникает сила упругости?

2. Что называют деформацией тела?

3. Какие виды деформаций вы знаете?

4. Как формулируется закон Гука?

5. От чего зависит сила упругости?

Источник

Запомни! Закон Гука Изменение длины тела при растяжении (или сжатии) прямо пропорционально модулю силы упругости. Fупр. = k ?l ?l- удлинение тела k – коэффициент пропорциональности, который называется жёсткостью. Жёсткость тела зависит от формы и размеров тела, а также от материала, из которого оно изготовлено.

Слайд 14 из презентации «Сила упругости нити».
Размер архива с презентацией 170 КБ.

Скачать презентацию

Физика 7 класс

краткое содержание других презентаций

«Виды блоков» — Из истории применения блоков. Какую силу нужно приложить человеку, чтобы везти тележку весом 210 Н. Полиспаст. К правому концу троса неподвижного блока подвешено ведро массой 10 кг. Простые механизмы. Изменить направление силы. Неподвижный блок. Выиграть в силе в два раза. Укажите плечи сил. Система блоков. Рычаг. Подвижный блок. Системы блоков. Применение полиспастов. Ворот. С помощью подвижного блока груз был поднят на высоту, равную 1 м.

«Равнодействующая сила» — Основополагающий вопрос. Две силы, приложенные к телу, направлены вдоль одной прямой. Равнодействующая сила R. Каждому из вас приходилось тянуть какой-нибудь груз. Если F1 < F2, то R направлена по направлению действия силы F2. Основная задача. Примеры движения тел под действием нескольких сил. Две противоположно направленные силы равны по величине. Представим, что тело движется под действием силы F1 вверх.

««Плавание тел» 7 класс» — В воде держатся громадные суда, изготовленные из стали, плотность которой почти в 8 раз больше плотности воды. Среднее значение плотности судна оказывается значительно меньше плотности воды. Меняя объем пузыря, рыбы могут изменять глубину погружения. Формулы. Тело плавает, полностью или частично погрузившись в жидкость, при условии: FA = Fт. У рыб есть орган, называемый плавательным пузырем. Плавание тел.

«Экономия электроэнергии в быту» — Резерв экономии электроэнергии. Накипь внутри электрочайников. Экономное расходование электроэнергии в быту. Не допускайте бурного кипения воды. Используйте полупроводниковые светорегуляторы. Совет взрослым. Меняйте конфорку. Экономное расходование электроэнергии при освещении комнат. Микроволновые печи. Диаметры днищ кастрюль. Башенный способ. Трубчатые конфорки. Замена двух расположенных рядом электролампочек на одну.

«Определение плотности вещества» — Что вы можете сказать об отношении масс и плотностей. Подумай и ответь. Что показывает плотность. Брусок металла. Определение массы частицы вещества. Цилиндры. Запомни схему расчёта плотности. Масса. Земная кора. Ареометры. Какая жидкость имеет наибольшую плотность. Чем отличаются приборы. Устные задачи на перевод единиц измерения. Данные гистограммы плотностей древесины. Как определить массу тела.

«Сила тяжести и масса» — Единица измерения силы. Вес тела можно определить по формуле. Вам даны буквы, обозначающие физические величины. Единицы силы. Связь между силой тяжести и массой тела. Сила тяжести увеличивается с увеличением массы тела. Умение. Задача. Величину 9,8 Н/кг обозначают g. Вес тела измеряется динамометром. Хорошо ли ты знаешь силу тяжести и вес. Назовите приборы, которыми можно измерить эти величины. Экспериментальное задание.

Всего в теме
«Физика 7 класс»

101 презентация

Источник

Сила упругости

Любое тело, когда его деформируют и оказывают внешнее воздействие, сопротивляется и стремиться восстановить прежние форму и размеры. Это происходит по причине электромагнитного взаимодействия в теле на молекулярном уровне.

Деформация — изменение положения частиц тела друг относительно друга. Результат деформации — изменение межатомных расстояний и перегруппировка блоков атомов.

Определение. Что такое сила упругости?

Сила упругости — сила, возникающая при деформации в теле и стремящаяся вернуть тело в начальное состояние. 

Рассмотрим простейшие деформации — растяжение и сжатие 

Сила упругости

На рисунке показано, как действует сила упругости, когда мы сжимаем или растягиваем стержень.

Закон Гука

Для малых деформаций x≪ l справедлив закон Гука. 

Закон Гука

Деформация, возникающая в упругом теле, пропорциональна приложенной к телу силе. 

Fупр=-kx

Здесь k — коэффициент пропорциональности, называемый жесткостью. Единица измерения жесткости системе СИ Ньютон на метр. Жесткость зависит от материала тела, его формы и размеров.

Знак минус показывает, что сила упругости противодействует внешней силе и стремится вернуть тело в первоначальное состояние. 

Существуют и другие формы записи закона Гука. Относительной деформацией тела называется отношение ε=xl. Напряжением в теле называется отношение σ=-FупрS.  Здесь S — площадь поперечного сечения деформированного тела.  Вторая формулировка закона Гука: относительная деформация пропорциональна напряжению. 

ε=σE.

Здесь E — так называемый модуль Юнга, который не зависит от формы и размеров тела, а зависит только от свойств материала. Значение модуля Юнга для различных материалов широко варьируется. Например, для стали E≈2·1011 Нм2, а для резины E≈2·106 Нм2

Закон Гука можно обобщить для случая сложных деформаций. Рассмотрим деформацию изгиба стержня. При такой деформации изгиба сила упругости пропорциональна прогибу стержня. 

Закон Гука

Концы стержня лежат на двух опорах, которые действуют на тело с силой N→, называемой силой нормальной реакции опоры. Почему нормальной? Потому что эта сила направлена перпендикулярно (нормально) поверхности соприкосновения. 

Если стержень лежит на столе, сила нормальной реакции опоры направлена вертикально вверх, противоположно силе тяжести, которую она уравновешивает. 

Вес тела — это сила, с которой оно действует на опору. 

Силу упругости часто рассматривают в контексте растяжения или сжатия пружины. Это распространенный пример, который часто встречается не только в теории, но и на практике. Пружины используются для измерения величины сил. Прибор, предназначенный для этого — динамаметр. 

Динамометр — пружина, растяжение которой проградуированно в единицах силы. Характерное свойство пружин заключается в том, что закон Гука для них применим при достаточно большом изменении длины.

При сжатии и растяжении пружины действует закон Гука, возникают упругие силы, пропорциональные изменению длины пружины и ее жесткости (коэффициента k). 

В отличие от пружин стержни и проволоки подчиняются закону Гука в очень узких пределах. Так, при относительной дефомации больше 1% в материале возникают необратимые именения — текучесть и разрушения.

Источник

Физика, 10 класс

Урок 9. Закон Гука

Перечень вопросов, рассматриваемых на этом уроке

1.Закона Гука.

2.Модели видов деформаций.

3. Вычисление и измерение силы упругости, жёсткости и удлинение пружины.

Глоссарий по теме

Сила упругости – это сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение.

Деформация – изменение формы или размеров тела, происходящее из-за неодинакового смещения различных частей одного и того же тела в результате воздействия другого тела. Виды деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

Закон Гука – сила упругости, возникающая при деформации тела (растяжение или сжатие пружины), пропорциональна удлинению тела (пружины), и направлена в сторону противоположную направлению перемещений частиц тела

Основная и дополнительная литература по теме:

Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112

Рымкевич А.П. Сборник задач по физике. 10-11класс.- М.:Дрофа,2009. Стр 28-29

ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.

Основное содержание урока

В окружающем нас мире мы наблюдаем, как различные силы заставляют тела двигаться, делать прыжки, перемещаться, взаимодействовать.

Однако можно также наблюдать как происходят разрушения, так называемые деформации, различных сооружений: мостов, домов, разнообразных машин.

Что необходимо знать инженеру конструктору, строителю, чтобы строить надёжные сооружения: дома, мосты, машины?

Почему деформации различны, какие виды деформации могут быть у конкретных тел? Почему одни тела после деформации могут восстановиться, а другие нет? От чего зависит и можно ли рассчитать величину этих деформаций?

Деформация — это изменение формы или размеров тела, в результате воздействия на него другого тела.

Почему деформации не одинаковы у различных тел, если мы их, к примеру, сжимаем? Давайте вспомним что мы знаем о строении вещества.

Все вещества состоят из частиц. Между этими частицами существуют силы взаимодействия- эти силы электромагнитной природы. Эти силы в зависимости от расстояний между частицами проявляются, то как силы притяжения, то как силы отталкивания.

Сила упругости – сила, возникающая при деформации любых тел, а также при сжатии жидкостей и газов. Она противодействует изменению формы тел.

Мы можем наблюдать несколько видов деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

При деформации растяжения межмолекулярные расстояния увеличиваются. Такую деформацию испытывают струны в музыкальных инструментах, различные нити, тросы, буксирные тросы.

При деформации сжатия межмолекулярные расстояния уменьшаются. Под такой деформацией находятся стены, фундаменты сооружений и зданий.

При деформации изгиба происходят неординарные изменения, одни межмолекулярные слои увеличиваются, а другие уменьшаются. Такие деформации испытывают перекрытия в зданиях и мостах.

При кручении – происходят повороты одних молекулярных слоёв относительно других. Эту деформацию испытывают: валы, витки цилиндрических пружин, столярный бур, свёрла по металлу, валы при бурении нефтяных скважин. Деформация среза тоже является разновидностью деформации сдвига.

Первое научное исследование упругого растяжения и сжатия вещества провёл английский учёный Роберт Гук.

Роберт Гук установил, что при малых деформациях растяжения или сжатия тела абсолютное удлинение тела прямо пропорционально деформирующей силе.

Изменение длины тела при растяжении прямо

F упр = k ·Δℓ = k · Iℓ−ℓ0I закон Гука.

k− коэффициент пропорциональности, жёсткость тела.

ℓ0 — начальная длина.

ℓ — конечная длина после деформации.

Δℓ = I ℓ−ℓ₀ I- абсолютное удлинение пружины.

Изменение длины тела при растяжении прямо — единица измерения жёсткости в системе СИ.

При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе, а слишком большие деформации разрушают тело.

Для расчёта движения тел под действием силы упругости, нужно учитывать направление этой силы. Если принять за начало отсчёта крайнюю точку недеформированного тела, то абсолютное удлинение тела можно характеризовать конечной координатой деформированного тела. При растяжении и сжатии сила упругости направлена противоположно смещению его конца.

Закон Гука можно записать для проекции силы упругости на выбранную координатную ось в виде:

F упр x = − kx — закона Гука.

k – коэффициент пропорциональности, жёсткость тела.

x = Δℓ = ℓ−ℓ0 удлинение тела (пружины, резины, шнура, нити….)

Fупр x = − kx

Закон Гука:

Fупр = k·Δℓ = k · Iℓ−ℓ0I

Графиком зависимости модуля силы упругости от абсолютного удлинения тела является прямая, угол наклона которой к оси абсцисс зависит от коэффициента жёсткости k. Если прямая идёт круче к оси силы упругости, то коэффициент жёсткости этого тела больше, если же уклон прямой идёт ближе к оси абсолютного удлинения, следует понимать, что жёсткость тела меньше.

Изменение длины тела при растяжении прямо

График, зависимости проекции силы упругости на ось ОХ, того же тела от значения х.

Изменение длины тела при растяжении прямо

Необходимо помнить, что закон Гука хорошо выполняется при только при малых деформациях. При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе.

Разбор тренировочных заданий

1. По результатам исследования построен график зависимости модуля силы упругости пружины от её деформации. Чему равна жёсткость пружины? Каким будет удлинение этой пружины при подвешивании груза массой 2кг?

Изменение длины тела при растяжении прямо

Решение: По графику идёт линейная зависимость модуля силы упругости и удлинение пружины. Зависимость физических величин по Закону Гука:

F упр x = − kx (1)

Fупр =k·Δℓ = k · Iℓ−ℓ0I (2)

Из формулы (1) выражаем:

Изменение длины тела при растяжении прямо

Зная что Fт = mg = 20 Н, Fт = Fупр= k·Δℓ следовательно

Изменение длины тела при растяжении прямо

Ответ: жёсткость пружины равна 200 Н/м, удлинение пружины равно 0,1м.

2. К системе из кубика массой 1 кг и двух пружин приложена постоянная горизонтальная сила. Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Удлинение первой пружины 0,05 м. Жёсткость первой пружины равна 200 Н/м. Удлинение второй пружины 0,25 м.

Изменение длины тела при растяжении прямо

  1. Чему равна приложенная к системе сила?
  2. Чему равна жёсткость второй пружины?
  3. Во сколько раз жёсткость второй пружины меньше чем первой?

Решение:

1. По условию задачи система находится в покое. Зная жёсткость и удлинение пружины найдём силу, которая уравновешивает приложенную постоянную горизонтальную силу.

F = F упр =k1·Δℓ1= 200 Н/м·0,05 м = 10 Н

2. Жёсткость второй пружины:

Изменение длины тела при растяжении прямо

3. k1/ k2 = 200/40 = 5

Ответ: F=10 Н; k2 = 40 Н/м; k1/k2 = 5.

Источник

1. Вспоминай формулы по каждой теме

2. Решай новые задачи каждый день

3. Вдумчиво разбирай решения

Сила упругости — это сила, возникающая при упругой деформации тела и направленная в сторону, противоположную смещению частиц тела в процессе деформации. Силы, возникающие при пластических деформациях, не относятся к силам упругости.

Понятие о деформациях

Деформация — это изменение формы и размеров тела.

К деформациям относятся: растяжение, сжатие, кручение, сдвиг, изгиб.

Деформации бывают упругими и пластическими.

Закон Гука

Абсолютная величина силы упругости прямо пропорциональна величине деформации. В частности, для пружины, сжатой или растянутой на величину (displaystyle x) (разница между крайними положениями), сила упругости задается формулой [F=kx] где (displaystyle k) — коэффициент жесткости пружины.

Единицы измерения коэффициента жесткости: (k=)[Н/м].

Изменение длины тела при растяжении прямо

Закон Гука о линейной зависимости силы упругости от величины деформации справедлив лишь при малых деформациях тела.

Кубик массой (M = 2) кг, сжатый с боков пружинами, покоится на гладком горизонтальном столе. Первая пружина сжата на 2 см, а вторая сжата на 6 см. Жёсткость первой пружины (k_1 = 1200) Н/м. Чему равна жёсткость второй пружины (k_2)? Ответ выразите в Н/м.

По второму закону Ньютона силы упругости пружин будут уравновешивать друг друга, следовательно: [k_1Delta x_1=k_2Delta x_2] где (Delta x_1) и (Delta x_2) – сжатие первой и второй пружины соответственно.
Откуда жесткость второй пружины [k_2=dfrac{k_1 Delta x_1}{Delta x_2}= dfrac{1200text{ Н/м}cdot 2text{ см}}{6text{ см}}=400text{ Н/м}]

Ответ: 400

На штативе закреплён школьный динамометр. К нему подвесили груз массой 0,1 кг. Пружина динамометра при этом удлинилась на 2,5 см. Чему будет равно удлинение пружины, если масса груза увеличится втрое? (Ответ дайте в сантиметрах)

Согласно закону Гука [F=kDelta x] где k – жесткость пружины, ( Delta x) – удлинение пружины.
Найдем жесткость пружины, зная, что ( Delta x) = 2,5 см = 0,025 м при приложении силы, равно ( F=m_1g=0,1cdot 10=1text{ H} ): [k=dfrac{F}{Delta x}=dfrac{1}{0,025}=40text{ H/кг}] Если массу груза увеличить в 3 раза, то есть, (m_2=0,3) кг, то удлинение пружины будет равно: [Delta x=dfrac{F}{k}=dfrac{m_2g}{k}=dfrac{3cdot0,1cdot10text{ H}}{40text{ H/кг}}=0,075text{ м}=7,5text{ см}]

Ответ: 7,5

К системе из кубика массой M = 3 кг и двух пружин приложена постоянная горизонтальная сила F величиной 20 Н (см. рисунок). Между кубиком и опорой трения нет. Система покоится. Жёсткость первой пружины (k_1 = 400 text{ Н/м}). Жёсткость второй пружины (k_2 = 800 text{ Н/м}). Каково удлинение первой пружины? (Ответ дайте в сантиметрах)

Изменение длины тела при растяжении прямо

Согласно закону Гука удлинение (Delta x) пружины связано с ее жесткостью k и приложенной к ней силе F выражением (F=kDelta x). На первую пружину действует такая же сила F, что и на вторую, так как трения между кубиком и опорой нет. То, что первая пружина соединена со второй через кубик, здесь не имеет никакого значения, соответственно удлинение первой пружины – это величина, равная: [Delta x=dfrac{F}{k_1}=dfrac{20text{ H}}{400text{ H/м}}=0,05 text{ м}=5 text{ см}]

Ответ: 5

Определите силу, под действием которой пружина жёсткостью 200 Н/см удлинится на 5 мм.

Согласно закону Гука ( F=kDelta x ), где k – жесткость пружины, ( Delta x) – удлинение пружины, получаем: [F=kDelta x=(dfrac{200}{0,01})text{H/м}cdot(5cdot10^{-3})text{м}=100text{ H}]

Ответ: 100

Пружина одним концом прикреплена к неподвижной опоре, к другому концу приложили силу равную 1500 Н, при этом пружина растянулась на 0,2 м. Определите жесткость данной пружины. Ответ дать в Н/м.

После растяжения, пружина покоится и на неё действуют 2 силы направленные в противоположные направления: (F_{text{упр}}) – сила упругости и F – приложенная сила.
Тогда по первому закону Ньютона: [F_{text{упр}}=F] По закону Гука: [F_{text{упр}}=kx] Приравниваем эти формулы: [F=kx] Тогда [k=frac{F}{x}=frac{1500}{0,2}=7500 text{ Н/м}]

Ответ: 7500

К потолку прикреплены одним концом две пружины с одинаковой жесткостью. За другой конец первую пружину растягивают с силой (F_{text{1}}), которая в 2,5 раза больше силы (F_{text{2}}), растягивающей вторую пружину. При этом вторая пружина растянулась на 0,4 м. Насколько растянулась первая пружина? Ответ дать в метрах.

После растяжения обе пружины находятся в покое и на них, кроме данных сил действует сила упругости. Тогда по первому закону Ньютона: [F_{text{упр1}}=F_{text{1}}] [F_{text{упр2}}=F_{text{2}}] где (F_{text{упр1}}) – сила упругости, действующая на первую пружина, (F_{text{упр2}}) – на вторую.
По закону Гука: [F_{text{упр}}=kx] Воспользуемся этим законом в вышенаписанных формулах: [kx_{1}=F_{1}quad(1)] [kx_{2}=F_{text{2}}quad(2)] где (x_{1}) – удлинение первой пружины, (x_{2}) – второй. Разделим (1) на (2), получится: [frac{x_{1}}{x_{2}}=frac{F_{text{1}}}{F_{text{2}}}Rightarrow x_{1}=dfrac{F_{text{1}}x_{2}}{F_{text{2}}}=2,5cdot0,4=1text{ м}]

Ответ: 1

К грузу массой (m) аккуратно подвесили другой груз массой (M), при этом пружина с жесткостью 1200 Н/м удлинилась так, как показано на рисунке. Найдите массу (M). Ускорение свободного падения считать равным 10 м/(c^{2}). Ответ дать в кг.

Изменение длины тела при растяжении прямо

Рассмотрим ситуацию до подвешивания груза: система тел “груз и пружина” покоится, на неё действуют 2 силы, направленные в противоположные стороны: сила тяжести и сила упругости.
Тогда по первому закону Ньютона: [mg=F_{text{упр}1}] Рассмотрим ситуацию после подвешивания груза: систама тел “2 груза и пружина” покоится, на неё действуют 2 силы, направленные в противоположные стороны: сила тяжести и сила упругости.
Тогда по первому закону Ньютона: [mg+Mg=F_{text{упр2}}] По закону Гука: [F_{text{упр}}=kx] Воспользуемся этим законом в вышенаписанных формулах: [mg=kx_{1}quad(1)] [mg+Mg=kx_{2}quad(2)] Вычтем (1) из (2), получится: [Mg=k(x_{2}-x_{1})Rightarrow M=dfrac{k(x_{2}-x_{1})}{g}=frac{1200cdot0,03}{10}=3,6text{ кг}]

Ответ: 3,6

Источник