Изгиб с растяжением сжатием лекции

Изгиб с растяжением сжатием лекции thumbnail

Введение. 

Формы тел, изучаемых в сопротивлении материалов.

Гипотезы о свойствах материала.

Связи.

Расчётная модель.

Основные принципы.

Силы внешние и внутренние.

Метод сечений, РОЗУ.

Внутренние силовые факторы.

Виды нагружения стержня.

Напряжения.

Зависимости между напряжениями и внутренними силовыми факторами.

Деформации.

Введение

01 — Введение-7.pdf

Adobe Acrobat Document
1.2 MB

Растяжение и сжатие прямого стержня.

Связь внутренних сил с внешними нагрузками.

Перемещения и деформации.

Связь деформаций в продольном и поперечном направлениях, коэффициент Пуассона.

Напряжения в поперечных и наклонных сечениях.

Закон Гука для одноосного напряжённого состояния.

Объёмная деформация.

Потенциальная энергия деформации и работа внешних сил.

Статически неопределимые задачи растяжения (сжатия), их особенности.

Механические характеристики материалов.

Закон разгрузки.

Технические (условные) характеристики.

Схематизация диаграмм.

Расчёт на прочность.

Пластическое деформирование систем.

Расчёт по предельным нагрузкам.

Характеристики пластичности материалов при растяжении.

Влияние различных факторов на механические характеристики материалов.

Растяжение (сжатие)

02.pdf

Adobe Acrobat Document
2.5 MB

Основные понятия кручения.

Гидродинамическая и мембранная аналогии.

Напряжённое состояние «чистый сдвиг». Свойство парности касательных напряжений.

Закон Гука для сдвига.

Удельная потенциальная энергия при чистом сдвиге.

Связь характеристик упругости материала E, G и ν.

Кручение стержня круглого поперечного сечения.

Определение напряжений, углов поворота сечений, энергия деформации и работа внешних моментов.

Кручение стержня прямоугольного поперечного сечения.

Кручение тонкостенных замкнутых и разомкнутых профилей.

Расчёт на прочность.

Кручение

03.pdf

Adobe Acrobat Document
2.3 MB

Перечень геометрических характеристик.

Виды координатных осей.

Изменение моментов инерции при параллельном переносе и повороте осей.

Моменты инерции простейших фигур, пример расчёта составной фигуры.

Плоские фигуры

04.pdf

Adobe Acrobat Document
869.8 KB

Виды изгиба, гипотезы, напряжения.

Прямой чистый изгиб прямого стержня.

Определение напряженй и кривизны оси стержня.

Потенциальная энергия деформации.

Рациональные формы поперечных сечений.

Расчёт на прочность.

Поперечный изгиб. Оценка величины касательных напряжений.

Дифференциальное уравнение оси изогнутого стержня. Метод Коши-Крылова определения перемещений и углов поворота поперечных сечений прямого изогнутого стержня.

Косой изгиб.

Внецентренное растяжение и сжатие.

Изгиб.

05.pdf

Adobe Acrobat Document
1.7 MB

Определение напряжений, перемещений и потенциальной энергии деформации.

Энергетические теоремы: Кастилиано, Лагранжа, Бетти (взаимности перемещений).

Интеграл Мора для определения перемещений. Способ Верещагина.

Пружины.

Общий случай нагружения.

06.pdf

Adobe Acrobat Document
2.8 MB

Введение.

Плоские статически неопределимые конструкции:
— один раз статически неопределимые;

— два раза статически неопределимые;

— n раз статически неопределимые;

— рамы с замкнутым контуром, учёт свойств прямой и косой симметрии;

— многоопорные балки.

Плоско-пространственные рамы.

Раскрытие статической неопределимости методом сил.

07.pdf

Adobe Acrobat Document
1.6 MB

Стержень прямоугольного поперечного сечения.

Стержень произвольного поперечного сечения.

Остаточные напряжения.

Расчёт по предельным нагрузкам при изгибе (пластические шарниры).

Упруго-пластический изгиб.

08.pdf

Adobe Acrobat Document
1.1 MB

Напряжённое состояние в точке тела.

Тензор напряжений.

Главные площадки и главные напряжения и их определение.

Типы напряжённых состояний.

Эллипсоид напряжений.

Круговая диаграмма Мора.

Шаровой тензор и девиатор.

Деформированное состояние в точке тела.

Тензор деформаций.

Главные дефомации.

Обобщённый закон Гука для изотропного материала.

Объёмная деформация.

Удельная потенциальная энергия деформации, её деление на энергию изменения формы и энергию изменения объёма.

Сложное н.с.

09.pdf

Adobe Acrobat Document
2.1 MB

Принципы построения критериев пластичности и разрушения. Основные понятия.

Эквивалентное напряжение.

Теория максимального касательного напряжения.

Энергетическая теория.

Теория прочности Мора.

Пределы применимости теорий прочности.

Понятие о механизме разрушения. Энергетический и силовой подход.

Теория Гриффитса.

Коэффициент интенсивности напряжений.

Критическое значение коэффициента интенсивности напряжений как характеристика трещиностойкости материала.

Компьютерное исследование разрушения материала.

Разрушение.

10.pdf

Adobe Acrobat Document
3.0 MB

Явление усталости.

Механизм усталостного разрушения.

Характеристики циклов переменных напряжений.

Кривые усталости и предел выносливости.

Влияние концентрации напряжений, размера и чистоты обработки детали на её сопротивление усталости.

Диаграмма предельных амплитут.

Расчёт на прочность при одноосном напряжённом состоянии и при кручении.

Вероятностный характер усталостного разрушения.

Накопление усталостных повреждений и влияние нестационарного нагружения на сопротивление усталости.

Закон линейного суммирования повреждений.

Усталостное разрушение.

11.pdf

Adobe Acrobat Document
1.1 MB

Понятие об устойчивых и неустойчивых формах равновесия.

Критическая нагрузка.

Устойчивость продольно сжатых стержней — задача Эйлера.

Сравнение поведения идеальных и реальных стержней при сжатии.

Зависимость критического напряжения от гибкости стержня.

Пределы применимости формулы Эйлера.

Устойчивость сжатых стержней за пределами упругости.

Энергетический метод определения критической нагрузки.

Расчёт продольно сжатых стержней по коэффициенту понижения допускаемого напряжения сжатия.

Устойчивость.

12.pdf

Adobe Acrobat Document
1.7 MB

Особенности задач продольно-поперечного изгиба.

Читайте также:  Первая помощь при растяжении мышц и связок ноги

Дифференциально уравнение оси изогнутого стержня, его интегрирование, определение перемещений и напряжений.

Приближённый метод определения прогибов при продольно-поперечном изгибе (формула С.П.Тимошенко).

Сжато-изогнутые балки.

13.pdf

Adobe Acrobat Document
888.7 KB

Геометрия тонкостенной оболочки вращения, меридиональные и окружные сечения.

Безмоментная теория расчёта осесимметрично нагруженных тонкостенных оболочек вращения.

Цилиндрическая, сферическая и коническая оболочки, находящиеся под действием постоянного давления.

Безмоментная теория осесимметричных оболочек.

14.pdf

Adobe Acrobat Document
2.8 MB

Основные соотношения.

Диски постоянной толщины.

Отверстие в центре — концентратор напряжений.

Диск равного сопротивления.

Диски.

15.pdf

Adobe Acrobat Document
761.1 KB

Определение напряжений и радиальных перемещений в толстостенных цилиндрах, нагруженных внутренним и внешним давлениями.

Частные случаи нагружения цилиндров:

— цилиндр под действием внутреннего давления;

— плита под действием внутреннего давления;

— труба под действием внешнего давления;

— вал, нагруженный давлением;

— равномерно растянутая плита с отверстием.

Расчёт составных труб.

Автофретирование.

Расчёт толстостенных цилиндров, нагруженных давлениями (задача Лямэ).

16.pdf

Adobe Acrobat Document
1.5 MB

Note:
Please fill out the fields marked with an asterisk.

Источник

Сложное сопротивление – одновременное действие на брус нескольких простых видов деформаций: растяжения-сжатия, сдвига, кручения и изгиба. Например, совместное действие растяжения и кручения.

Косой изгиб.

Косой изгиб – это изгиб, при котором плоскость действия изгибающего момента не совпадает ни с одной из главных плоскостей инерции сечения бруса.

В общем случае при косом изгибе в поперечных сечениях возникают четыре внутренних силовых фактора: поперечные силы Qx, Qy и изгибающие моменты Mx , My. Таким образом, косой изгиб можно рассматривать как сочетание двух плоских поперечных изгибов во взаимно перпендикулярных плоскостях. Влиянием поперечных сил на прочность и жесткость бруса обычно пренебрегают.

Косой изгиб

Нейтральная линия при косом изгибе всегда проходит через центр тяжести сечения.

Условие прочности при косом изгибе:

условие прочности при косом изгибе

где ymax, xmax — координаты точки сечения, наиболее удаленной от нейтральной оси.

Для сечений, имеющих две оси симметрии, максимальные напряжения будут в угловых точках, а условие прочности:

условие прочности для сечений имеющих две оси симметрии

где Wx , Wy – осевые моменты сопротивления сечения относительно соответствующих осей.

Если материал бруса не одинаково работает на растяжение и на сжатие, то проверку его прочности выполняют по допускаемым и растягивающим и сжимающим напряжениям.

Прогибы при косом изгибе определяют, используя принцип независимости действия сил, геометрическим суммированием прогибов вдоль направления главных осей:

прогиб при косом изгибе

Изгиб с растяжением (сжатием).

При таком виде сложного сопротивления внутренние силовые факторы приводятся к одновременному действию продольной силы N и изгибающего момента M.

Рассмотрим случай центрального растяжения бруса в сочетании с косым изгибом. На консольный брус действует сила F, составляющая некоторый угол с продольной осью бруса и не лежащая ни в одной из главных плоскостей сечения. Сила приложена в центре тяжести торцевого сечения бруса:

изгиб с растяжением

К расчёту на прочность бруса при изгибе с растяжением:

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Разложим силу F на три составляющие. Тогда внутренние силовые факторы приобретут следующий вид:

внутренние силовые факторы при изгибе с растяжением

Напряжение в произвольно выбранной точке Д, имеющей координаты (хд, уд), пренебрегая действием поперечных сил, будут определяться по формуле:

Напряжение в произвольно выбранной точке при изгибе с растяжением

где А — площадь поперечного сечения.

Если сечение имеет две оси симметрии (двутавр, прямоугольник, круг), наибольшее напряжение определяют по формуле:

Условие прочночти при изгибе с растяжением

Условие прочночти имеет вид:

Косой изгиб

Также как и в случае косого изгиба, если материал бруса не одинаково работает на растяжение и на сжатие, то проверку прочности проводят по допускаемым растягивающим и сжимающим напряжениям.

Внецентренное растяжение или сжатие.

При таком виде сложного сопротивления продольная сила приложена не в центре тяжести поперечного сечения бруса.

внецентренное растяжение или сжатие

К расчёту на прочность бруса при внецентренном растяжении

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Приведём силу F к центру тяжести:

приведение силы к центру тяжести

где уF , xF — координаты точки приложения силы F.

В произвольной точке Д, с координатами (хд, уд), нормальное напряжение определяется по фомуле:

нормальное напряжение при внецентренном растяжение или сжатие

Условие прочности для бруса, изготовленного из материала, одинаково сопротивляющегося растяжению и сжатию, имеет вид:

Условие прочности для бруса при внецентренном растяжение или сжатие

Для бруса, который неодинаково работает на растяжение и на сжатие проверка прочности по допускаемым растягивающим и сжимающим напряжениям.

Кручение с изгибом.

Сочетание деформаций изгиба и кручения характерно для работы валов машин.

Кручение с изгибом

Напряжения в сечениях вала возникают от кручения и от изгиба. При изгибе появляются нормальные и касательные напряжения:

Напряжения в сечениях вала от кручения и от изгиба

Эпюры напряжений в сечении бруса при кручении с изгибом

Нормальное напряжение достигает максимума на поверхности:

Нормальное напряжение при кручении с изгибом

Касательное напряжение от крутящего момента Mz достигает максимума также на поверхности вала:

Читайте также:  Долго болит растяжение голеностопа

Касательное напряжение от крутящего момента

Из третьей и четвёртой теории прочности:

эквивалентный крутящий момент

При кручении с изгибом условие прочности имеет вид:

условие прочности при кручении с изгибом

Источник

Изгиб балки при действии продольных и поперечных сил.

   На практике очень часто встречаются случаи совместной работы стержня на изгиб и на растяжение или сжатие. Подобного рода деформация может вызываться или совместным действием на балку продольных и поперечных сил, или только одними продольными силами.

   Первый случай изображен на Рис.1. На балку АВ действуют равномерно распределенная нагрузка q и продольные сжимающие силы Р.

Рис.1. Совместное действие изгиба и сжатия.

   Предположим, что прогибами балки по сравнению с размерами поперечного сечения можно пренебречь; тогда с достаточной для практики степенью точности можно считать, что и после деформации силы Р будут вызывать лишь осевое сжатие балки.

   Применяя способ сложения действия сил, мы можем найти нормальное напряжение в любой точке каждого поперечного сечения балки как алгебраическую сумму напряжений, вызванных силами Р и нагрузкой q.

   Сжимающие напряжения от сил Р равномерно распределены по площади F поперечного сечения и одинаковы для всех сечений:

нормальные напряжения от изгиба в вертикальной плоскости в сечении с абсциссой х, которая отсчитана, скажем, от левого конца балки, выражаются формулой

Таким образом, полное напряжение в точке с координатой z (считая от нейтральной оси) для этого сечения равно

   На Рис.2 изображены эпюры распределения напряжений в рассматриваемом сечении от сил Р, нагрузки q и суммарная эпюра.

   Наибольшее напряжение в этом сечении будет в верхних волокнах, где оба вида деформации вызывают сжатие; в нижних волокнах может быть или сжатие или растяжение в зависимости от числовых величин напряжений и . Для составления условия прочности найдем наибольшее нормальное напряжение.

Рис.2. Сложение напряжений сжатия и изгиба

   Так как напряжения от сил Р во всех сечениях одинаковы и равномерно распределены, то опасными будут волокна, наиболее напряженные от изгиба. Такими являются крайние волокна в сечении с наибольшим изгибающим моментом; для них

Таким образом, напряжения в крайних волокнах 1 и 2 среднего сечения балки выражаются формулой

,

и расчетное напряжение будет равно

Если бы силы Р были растягивающими, то знак первого слагаемого изменился бы, опасными были бы нижние волокна балки.

Обозначая буквой N сжимающую или растягивающую силу, можем написать общую формулу для проверки прочности:

(27.1)

Описанный ход расчета применяется и при действии на балку наклонных сил. Такую силу можно разложить на нормальную к оси, изгибающую балку, и продольную, сжимающую или растягивающую.

Внецентренное сжатие или растяжение.

   Вторым практически важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами. Этот вид деформации получается при действии на стержень двух равных и прямопротивоположных сил Р, направленных по прямой АА, параллельной оси стержня (Рис.3 а). Расстояние точки А от центра тяжести сечения ОА=е называется эксцентриситетом.

Рассмотрим сначала случай внецентренного сжатия, как имеющий большее практическое значение.

   Нашей задачей явится нахождение наибольших напряжений, материале стержня и проверка прочности. Для решения этой задачи приложим в точках О по две равные и противоположные силы Р (Рис.3 б). Это не нарушит равновесия стержня в целом и не изменит напряжений в его сечениях.

   Силы Р, зачеркнутые один раз, вызовут осевое сжатие, а пары сил Р, зачеркнутые дважды, вызовут чистый изгиб моментами . Расчетная схема стержня показана на Рис.3 в. Так как плоскость действия изгибающих пар ОА может не совпадать ни с одной из главных плоскостей инерции стержня, то в общем случае имеет место комбинация продольного сжатия и чистого косого изгиба.

   Так как при осевом сжатии и чистом изгибе напряжения во всех сечениях одинаковы, то проверку прочности можно произвести для любого сечения, хотя бы С—С (Рис.3 б, в).

   Отбросим верхнюю часть стержня и оставим нижнюю (Рис.3 г). Пусть оси Оу и Oz будут главными осями инерции сечения.

Рис.3. а) расчетная схема б) преобразование нагрузок в)приведенная расчетная схема г) механизм исследования напряжений

   Координаты точки А, — точки пересечения линии действия сил Р с плоскостью сечения, — пусть будут и . Условимся выбирать положительные направления осей Оу и Oz таким образом, чтобы точка А оказалась в первом квадранте. Тогда и будут положительны.

   Для того чтобы отыскать наиболее опасную точку в выбранном сечении, найдем нормальное напряжение в любой точке В с координатами z и у. Напряжения в сечении С — С будут складываться из напряжений осевого сжатия силой Р и напряжений от чистого косого изгиба парами с моментом Ре, где . Сжимающие напряжения от осевых сил Р в любой точке равны , где — площадь поперечного сечения стержня; что касается косого изгиба, то заменим его действием изгибающих моментов в главных плоскостях. Изгиб в плоскости х Оу вокруг нейтральной оси Oz будет вызываться моментом и даст в точке В нормальное сжимающее напряжение

Читайте также:  Сколько держится отек при растяжении связок

Точно так же нормальное напряжение в точке В от изгиба в главной плоскости х Oz, вызванное моментом , будет сжимающим и выразится формулой.

Суммируя напряжения от осевого сжатия и двух плоских изгибов и считая сжимающие напряжения отрицательными, получаем такую формулу для напряжения в точке В:

(1)

   Эта формула годится для вычисления напряжений в любой точке любого сечения стержня, стоит только вместо у и z подставить координаты точки относительно главных осей с их знаками.

   В случае внецентренного растяжения знаки всех составляющих нормального напряжения в точке В изменятся на обратные. Поэтому для того, чтобы получать правильный знак напряжений как при внецентренном сжатии, так и при внецентренном растяжении, нужно, кроме знаков координат у и z, учитывать также и знак силы Р; при растяжении перед выражением

должен стоять знак плюс, при сжатии — минус.

Полученной формуле можно придать несколько иной вид; вынесем за скобку множитель ; получим:

(2)

Здесь и — радиусы инерции сечения относительно главных осей (вспомним, что и ).

   Для отыскания точек с наибольшими напряжениями следует так выбирать у и z, чтобы достигло наибольшей величины. Переменными в формулах (1) и (2) являются два последних слагаемых, отражающих влияние изгиба. А так как при изгибе наибольшие напряжения получаются в точках, наиболее удаленных от нейтральной оси, то здесь, как и при косом изгибе, надо отыскать положение нейтральной оси.

   Обозначим координаты точек этой линии через и ; так как в точках нейтральной оси нормальные напряжения равны нулю, то после подстановки в формулу (2) значений и получаем:

или

(3)

Это и будет уравнение нейтральной оси. Очевидно, мы получили уравнение прямой, не проходящей через центр тяжести сечения.

Чтобы построить эту прямую, проще всего вычислить отрезки, отсекаемые ею на осях координат. Обозначим эти отрезки и . Чтобы найти отрезок , отсекаемый на оси Оу, надо в уравнении (3) положить

;

тогда мы получаем:

и

(4)

подобным же образом, полагая

;

получаем:

(5)

   Если величины и положительны, то отрезки и будут отрицательны, т. е. нейтральная ось будет расположена по другую сторону центра тяжести сечения, чем точка А (Рис.3 г).

   Нейтральная ось делит сечение на две части — сжатую и растянутую; на Рис.3 г растянутая часть сечения заштрихована. Проводя к контуру сечения касательные, параллельные нейтральной оси, получаем две точки и , в которых будут наибольшие сжимающие и растягивающие напряжения.

   Измеряя координаты у и z этих точек и подставляя их значения в формулу (1), вычисляем величины наибольших напряжений в точках и :

Если материал стержня одинаково сопротивляется растяжению и сжатию, то условие прочности получает такой вид:

   Для поперечных сечений с выступающими углами, у которых обе главные оси инерции являются осями симметрии (прямоугольник, двутавр и др.) и Поэтому формула упрощается, и мы имеем

   Если же материал стержня неодинаково сопротивляется растяжению и сжатию, то необходимо проверить прочность стержня как в растянутой, так и в сжатой зонах.

   Однако может случиться, что и для таких материалов будет достаточно одной проверки прочности. Из формул (4) и (5) видно, что положение точки А приложения силы и положение нейтральной оси связаны: чем ближе подходит точка А к центру сечения, тем меньше величины и и тем больше отрезки и . Таким образом, с приближением точки А к центру тяжести сечения нейтральная ось удаляется от него, и наоборот. Поэтому при некоторых положениях точки А нейтральная ось будет проходить вне сечения и все сечение будет работать на напряжения одного знака. Очевидно в этом случае всегда достаточно проверить прочность материала в точке .

   Разберем практически.важный случай, когда к стержню прямоугольного сечения (Рис. 4) приложена внецентренно сила Р в точке А, лежащей на главной оси сечения Оу. Эксцентриситет ОА равен е, размеры сечения b и d. Применяя полученные выше формулы, имеем:

Рис.4. Расчетная схема бруса прямоугольного сечения.

Напряжение в любой точке В равно

так как

Напряжения во всех точках линии, параллельной оси Oz, одинаковы. Положение нейтральной оси определяется отрезками

Нейтральная ось параллельна оси Oz; точки с наибольшими растягивающими и сжимающими напряжениями расположены на сторонах 1—1 и 3—3.

Значения и получатся, если подставить вместо у его значения . Тогда

Дальше…

Источник