График напряжений при растяжении

График напряжений при растяжении thumbnail

Графическое изображение зависимости между напряжениями (или нагрузками) и деформациями материала (или перемещениями при деформировании) представляет собой диаграмму деформирования.

Испытательные машины имеют специальные приспособления, которые автоматически фиксируют диаграмму растяжения. На диаграмме по оси ординат откладываются действующие осевые нагрузки, а по оси абсцисс — абсолютные деформации.

На рис. 2.2 даны типичные диаграммы растяжения различных металлов. Диаграмма с постепенным переходом из упругой в пластическую область (рис. 2.2, а) свойственна большинству металлов в пластичном состоянии (легированные стали, медь, бронза).

Диаграммы растяжения

Рис. 2.2. Диаграммы растяжения:

а — для большинства металлов в пластичном состоянии с постепенным переходом из упругой в пластическую область; б — для некоторых металлов в пластичном состоянии со скачкообразным переходом в пластическую область; в — для хрупких металлов

Пластичные материалы разрушаются при больших остаточных деформациях (больших остаточных удлинениях, измеряемых после разрыва).

Диаграмма со скачкообразным переходом в пластическую область в виде четко обозначенной «площадки» текучести (рис. 2.2, б) свойственна некоторым металлам. К таким металлам можно отнести мягкую углеродистую сталь, а также некоторые отожженные марганцовистые и алюминиевые бронзы.

Хрупкие материалы разрушаются при малых остаточных деформациях. К хрупким материалам можно отнести закаленную и неотпущенную сталь, серый чугун.

Характерные участки и точки диаграммы растяжения показаны на рис. 2.3. По оси абсцисс откладывают абсолютные удлинения А/ образца, а по оси ординат — значения растягивающей силы Р. Сначала получим на первом участке диаграммы 0—1 прямолинейную зависимость между силой и удлинением, что отражает закон Гука. При дальнейшем увеличении силы (за точкой 1) прямолинейная зависимость между Р и А/ нарушается. Точка 1 соответствует пределу пропорциональности, т. е. наибольшему напряжению, при котором еще соблюдается закон Гука. Если нагрузку, соответствующую точке 1, обозначить ,Pnu, а начальную площадь сечения образца Fq, то предел пропорциональности
Характерные участки и точки диаграммы растяжения

График напряжений при растяжении

Рис. 2.3. Характерные участки и точки диаграммы растяжения

Несколько выше точки 1 находится точка Г, соответствующая пределу упругости. Если нагрузку, соответствующую точке Г, обозначить через Руп, то предел упругости

График напряжений при растяжении

По ГОСТу предел упругости задается и обозначается ag os — напряжение, при котором остаточное удлинение достигает 0,05 % длины участка образца, равного базе тензометра.

За точкой Г возникают уже заметные остаточные деформации. В точке 2 диаграммы частицы материала начинают переходить и область пластичности — наступает явление текучести образца.

На диаграмме растяжения получается горизонтальный участок 2—3 (площадка текучести), параллельный оси абсцисс. Для участка 2—3 характерен рост деформации без заметного увеличения нагрузки. Обозначим величину нагрузки, соответствующей площадке текучести 2—3, через Рт. Напряжение ат, отвечающее этой нагрузке, это то напряжение, при котором рост деформации происходит без заметного увеличения нагрузки, оно и является физическим пределом текучести.

Предел текучести (физический) — это механическая характеристика материалов: напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения для материалов, имеющих эту площадку (см. рис. 2.3):
График напряжений при растяжении

Предел текучести устанавливает границу между упругой и упруго-пластической зонами деформирования.

Даже небольшое увеличение напряжения (нагрузки) выше предела текучести вызывает значительные деформации.

Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести: напряжение, при котором остаточная деформация образца достигает определенного значения, установленного техническими условиями (большего, чем это установлено для предела упругости).

Обычно допуском для величины остаточной деформации при растяжении принято остаточное удлинение 0,2 %. Эта величина называется условным пределом текучести:

График напряжений при растяжении

где Pq 2 — нагрузка при условном пределе текучести.

При увеличении напряжений сверх предела текучести при растяжении в результате сильной деформации происходит упрочнение металла (изменение его структуры и свойств) и сопротивление деформации увеличивается, поэтому за участком текучести, т. е. за точкой 3, наблюдается подъем кривой растяжения (участок упрочнения). До точки 4 удлинение образца происходит равномерно. Наибольшее значение нагрузки, предшествовавшее разрушению образца, обозначим Рмакс. Точка 4 характеризует максимальное условное напряжение, возникающее в процессе испытания, называемое временным сопротивлением.

Временное сопротивление ав — условное напряжение, определяемое по отношению действующей силы к исходной площади поперечного сечения образца и отвечающее наибольшей нагрузке ^макс’ предшествовавшей разрушению образца:

График напряжений при растяжении

В момент, соответствующий нагрузке Рмакс, появляется заметное местное сужение образца (шейка). Если до этого момента образец имел цилиндрическую форму, то теперь растяжение образца сосредоточивается в области шейки.

Участку 4—5 соответствует быстрое уменьшение сечения шейки, вследствие чего растягивающая сила уменьшается, хотя напряжение растет (площадь сечения в шейке ^врFq).

При дальнейшей деформации шейка сужается и образец разрывается по наименьшему сечению FK, где напряжения в действительности достигают наибольшей величины. Таким образом, нарастание пластической деформации при растяжении происходит поэтапно: равномерная пластическая деформация до точки 4 и местная пластическая деформация от точки 4 до точки 5 — момента разрушения.

Моменту разрыва соответствует точка 5, усилие разрыва обозначим Рк. Отношение разрывающего усилия к действительной площади сечения в месте разрыва называется истинным сопротивлением разрыву:

График напряжений при растяжении

У пластичных металлов в является характеристикой сопротивления пластической деформации, а у хрупких — характеристикой сопротивления разрушению.

Для пластичных материалов, образующих при растяжении шейку, характеристикой сопротивления разрушению служит истинное сопротивление разрыву (при разрушении).

При определении пределов пропорциональности, упругости, текучести и временного сопротивления соответствующая им нагрузка Р относилась к начальной площади поперечного сечения образца, т. е. площади образца до испытания. При растяжении образца в области упругой деформации или близко от нее, т. е. при определении пределов пропорциональности и упругости, можно пренебречь небольшим изменением площади сечения образца.

Читайте также:  Меновазин при растяжении мышц ноги

Однако в области пластической деформации изменение сечения образца становится значительным. Поэтому теоретически возможно для определения временного сопротивления и предела текучести относить соответствующую нагрузку не к исходной площади образца, а к его действительной площади, которую он имеет в момент приложения соответствующей нагрузки.

Напряжения, определенные по отношению приложенной нагрузки к начальной площади образца, называются условными напряжениями, а определенные по отношению к действительной площади — истинными.

На рис. 2.4 дана диаграмма истинных напряжений. В диаграмме по оси абсцисс откладывается относительное удлинение с = Д///0, а по оси ординат — нормальное напряжение а = P/Fq, где /0 и Fq — первоначальные длина и площадь сечения образца. Диаграмма в координатах «напряжения — деформации» на участке 4—5 является условной, как было указано выше. При напряжении, соответ-

Диаграмма истинных напряжений ствующем временному сопротивлению

Рис. 2.4. Диаграмма истинных напряжений ствующем временному сопротивлению (точка 4), образуется шейка и площадь сечения резко уменьшается, поэтому истинное напряжение увеличивается и истинная диаграмма 4—5′ расположена выше условной диаграммы 4—5.

Следует отметить, что временное сопротивление не совпадает с сопротивлением разрыву и оказывается меньше последнего. Истинное сопротивление разрыву получается делением наибольшей нагрузки Рпч (точка 4′) на истинную уменьшенную площадь сечения FBp в момент начала появления шейки.

Таким образом, истинные напряжения с увеличением деформации непрерывно растут до момента разрушения образца.

Показателем пластической деформации является его абсолютное остаточное удлинение А/0Ст.п ПРИ разрыве (отрезок ОЛ[ на рис. 2.3), так как упругая деформация (отрезок A^2) исчезает после разрыва:
График напряжений при растяжении

где /0 — начальная длина образца, /к — конечная длина образца (рис. 2.5).

Общее удлинение образца при растяжении слагается из равномерного и сосредоточенного удлинения (за счет образования шейки). Так как размеры испытуемых образцов могут быть различными, то характеристикой пластичности образца служит не его абсолютное, а относительное остаточное удлинение при разрыве 6 — отношение приращения расчетной длины образца после разрыва
График напряжений при растяжениик первоначальной расчетной длине /0 в процентах:

График напряжений при растяжении

Чем больше 5, тем пластичнее металл.

Образцы до растяжения (а) и после растяжения (б)

Рис. 2.5. Образцы до растяжения (а) и после растяжения (б)

Другой характеристикой пластичности металла является относительное сужение сечения ц/ после разрыва (в процентах) — отношение разности начальной площади и минимальной площади поперечного сечения образца разрыва к начальной площади поперечного сечения образца.

Если Fq — начальная площадь образца, FK — минимальная площадь сечения в месте образования шейки (в месте разрыва), то относительное сужение (в процентах)

График напряжений при растяжении

При оценке свойств образцов пластических материалов большое значение имеет их сопротивление пластической деформации. Оно показывает, какое напряжение можно допустить, не вызывая (или вызывая допускаемую величину) пластической деформации, т. е. изменения металла под действием внешних сил.

Свойства, характеризующие сопротивление пластической деформации, можно разделить на две группы: сопротивление металла малым пластическим деформациям и сопротивление металла значительным пластическим деформациям.

Величиной, характеризующей сопротивление малым пластическим деформациям, является предел упругости. Свойства сопротивления металла значительным пластическим деформациям проявляются при напряжениях выше условного предела текучести. Для пластических металлов временное сопротивление определяет сопротивление их значительным пластическим деформациям. Временное сопротивление является основной характеристикой хрупких материалов, разрушающихся при малых пластических деформациях.

В табл. 2.1 приведены механические характеристики некоторых материалов.

Источник

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]

Диаграмма растяжения

Рис. 1 Диаграмма растяжения стального образца

Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.

Построение диаграммы

Рассмотрим подробнее процесс построения диаграммы.

В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).

На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.

После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.

В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.

После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).

Читайте также:  Боль в шее растяжение мышцы лечение

Стальной образец с образовавшейся "шейкой"

Рис. 2 Стальной образец с «шейкой»

Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».

В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»

Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:

W=0,8Fmax∙Δlmax

По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.

Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.

Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >

Источник

&nbsp&nbsp&nbsp&nbspÄëÿ îòäåëüíî âçÿòîãî ýëåìåíòà êîíñòðóêöèè âçàèìîóðàâíîâåøåííûå àêòèâíàÿ ñèëà è ñèëà ðåàêöèè îïîðû ÿâëÿþòñÿ
âíåøíèìè ñèëàìè.

&nbsp&nbsp&nbsp&nbspÐàññìîòðèì, êàêèì îáðàçîì êîíñòðóêöèÿ îêàçûâàåò ñîïðîòèâëåíèå âíåøíåé íàãðóçêå, çà ñ÷åò ÷åãî ïðîèñõîäèò èçìåíåíèå
ôîðìû è ðàçìåðîâ êîíñòðóêöèè — äåôîðìèðîâàíèå (îò ëàò. deformatio — èñêàæåíèå).

10.3.1. Ðàñòÿæåíèå

&nbsp&nbsp&nbsp&nbspÍå îáðàùàÿ âíèìàíèå íà òî, êàêèì îáðàçîì, ñ òî÷êè çðåíèÿ êîíñòðóêòèâíîãî ðåøåíèÿ, ïðèëîæåíû âíåøíèå ñèëû Ð,
ðàññìîòðèì ðàñòÿæåíèå ýëåìåíòà êîíñòðóêöèè, ñõåìà íàãðóæåíèÿ êîòîðîãî ïîêàçàíà íà ðèñ. 10.3,à.

График напряжений при растяжении

Ðèñ. 10.3. Óïðîùåííàÿ ìîäåëü äåôîðìàöèè ïðè ðàñòÿæåíèè

Íà ðèñ. 10.3 ïîêàçàíà òàêæå óïðîùåííàÿ ìîäåëü ìåæàòîìíûõ ñâÿçåé â òâåðäîì òåëå. Æåñòêèå è ïðî÷íûå ìåæàòîìíûå ñâÿçè, ñîåäèíÿþùèå àòîìû
íåäåôîðìèðîâàííîãî òåëà (ðèñ. 10.3,á), ïðè ðàñòÿæåíèè (ðèñ. 10.3,â) ñîçäàþò áîëüøèå
âíóòðåííèå ñèëû ïðîòèâîäåéñòâèÿ âíåøíåé íàãðóçêå, ñòðåìÿùèåñÿ ñîõðàíèòü òåëî êàê åäèíîå öåëîå.
&nbsp&nbsp&nbsp&nbspÏîä äåéñòâèåì âíåøíèõ ñèë ÷àñòèöû (àòîìû) ìàòåðèàëà, èç êîòîðîãî ñäåëàíà êîíñòðóêöèÿ, áóäóò ïåðåìåùàòüñÿ, è
ïåðåìåùåíèå ÷àñòèö ïîä íàãðóçêîé áóäåò ïðîäîëæàòüñÿ, ïîêà ìåæäó âíåøíèìè è âíóòðåííèìè ñèëàìè íå óñòàíîâèòñÿ ðàâíîâåñèå.
&nbsp&nbsp&nbsp&nbspÒàêîå ñîñòîÿíèå íàçûâàåòñÿ äåôîðìèðîâàííûì
ñîñòîÿíèåì òåëà
.
&nbsp&nbsp&nbsp&nbspÌåðîé âîçäåéñòâèÿ âíåøíèõ ñèë íà àòîìû âåùåñòâà, êîòîðûå óäàëÿþòñÿ äðóã îò äðóãà (ïðè ðàñòÿæåíèè) èëè ñáëèæàþòñÿ
(ïðè ñæàòèè), ò. å. ìåðîé ïðîòèâîäåéñòâèÿ ìàòåðèàëà êîíñòðóêöèè âíåøíåìó ñèëîâîìó âîçäåéñòâèþ, ìåðîé âíóòðåííèõ ñèë â ìàòåðèàëå ÿâëÿåòñÿ
íàïðÿæåíèå. Íàïðÿæåíèåì íàçûâàåòñÿ âíóòðåííÿÿ ñèëà (âîçíèêàþùàÿ ïðè âîçäåéñòâèè âíåøíåé íàãðóçêè),
ïðèõîäÿùàÿñÿ íà åäèíèöó ïëîùàäè â îêðåñòíîñòè äàííîé òî÷êè ðàññìàòðèâàåìîãî ñå÷åíèÿ òåëà:

σ = Ð/F,

ãäå&nbsp&nbsp&nbsp σ &nbsp&nbsp&nbsp- íàïðÿæåíèå, Ïà (1Ïà=1Í/ì2);
P &nbsp&nbsp&nbsp- ñóììàðíàÿ ñèëà, Í;
F &nbsp&nbsp&nbsp- ïëîùàäü ïîïåðå÷íîãî ñå÷åíèÿ, ïåðïåíäèêóëÿðíîãî íàïðàâëåíèþ äåéñòâóþùåé ñèëû P,ì2.

&nbsp&nbsp&nbsp èíæåíåðíîé ïðàêòèêå èíîãäà èçìåðÿþò íàïðÿæåíèÿ â äàÍ/ìì2 (1äàÍ= 10Í).
&nbsp&nbsp&nbspÍàïðÿæåíèå, òàêèì îáðàçîì, ïîêàçûâàåò èíòåíñèâíîñòü ïðîòèâîäåéñòâèÿ âíóòðåííèõ ñèë âîçäåéñòâèþ âíåøíåé íàãðóçêè íà
ìåæàòîìíûå ñâÿçè ìàòåðèàëà êîíñòðóêöèè, èëè, ÷òî òî æå ñàìîå, èíòåíñèâíîñòü âîçäåéñòâèÿ âíåøíåé íàãðóçêè íà ìåæàòîìíûå ñâÿçè.
&nbsp&nbsp&nbspÅñëè ðàññìîòðåòü äåôîðìèðîâàííîå ñîñòîÿíèå ñòåðæíÿ (áðóñà) (ðèñ. 10.4) ïðè ðàñòÿæåíèè âíåøíèìè ñèëàìè Ð
(ïîêàçàíû íà ðèñóíêå ÷åðíûìè ñòðåëêàìè), òî â ëþáîì ïðîèçâîëüíî âçÿòîì ïîïåðå÷íîì ñå÷åíèè (íàïðèìåð, ïëîñêîñòüþ À) ðàñïðåäåëåíèå
íîðìàëüíûõ íàïðÿæåíèé σ = Ð/F áóäåò ðàâíîìåðíûì.

График напряжений при растяжении

Ðèñ. 10.4. Äåôîðìèðîâàííîå ñîñòîÿíèå áðóñà

&nbsp&nbsp&nbspÐàâíîäåéñòâóþùàÿ ñèëà íàïðÿæåíèé σâíóòðåííÿÿ ñèëà
Ð = σF (íà ðèñ. 10.4 — áåëàÿ ñòðåëêà) — ïðîõîäèò ÷åðåç öåíòð òÿæåñòè ïîïåðå÷íîãî ñå÷åíèÿ âäîëü ëèíèè äåéñòâèÿ
âíåøíåé ñèëû è ðàâíà åé.
&nbsp&nbsp&nbspÏîä äåéñòâèåì ðàñòÿãèâàþùèõ ñèë Ð äëèíà ñòåðæíÿ l óâåëè÷èâàåòñÿ íà âåëè÷èíó Δl,
íàçûâàåìóþ àáñîëþòíûì óäëèíåíèåì. Ðàñòÿæåíèå ñîïðîâîæäàåòñÿ òàêæå óìåíüøåíèåì ïîïåðå÷íûõ ðàçìåðîâ
ñå÷åíèÿ. Ýòî ÿâëåíèå íîñèò íàçâàíèå «ýôôåêò Ïóàññîíà» (ïî èìåíè ôðàíöóçñêîãî ó÷åíîãî è ìåõàíèêà
Ñ. Ïóàññîíà). Àáñîëþòíîå ïîïåðå÷íîå ñóæåíèå
ñòåðæíÿ ïðè ðàñòÿæåíèè Δb =
b — b
1; Δc = c — c1
.
&nbsp&nbsp&nbspÈìåííî çà ñ÷åò èçìåíåíèÿ ôîðìû è ðàçìåðîâ ëþáàÿ êîíñòðóêöèÿ ñîïðîòèâëÿåòñÿ (ñîçäàåò ñèëû ïðîòèâîäåéñòâèÿ) âíåøíèì íàãðóçêàì.

&nbsp&nbsp&nbsp èíæåíåðíîé ïðàêòèêå äåôîðìèðîâàííîå ñîñòîÿíèå ïðèíÿòî îöåíèâàòü íå òîëüêî àáñîëþòíûìè âåëè÷èíàìè èçìåíåíèé ôîðìû
( «ïåðåìåùåíèÿìè»), íî è îòíîñèòåëüíûìè áåçðàçìåðíûìè âåëè÷èíàìè —
«äåôîðìàöèÿìè»:

ε = Δl/l; ε = Δb/b = Δc/c,

ãäå&nbsp&nbsp&nbsp ε &nbsp&nbsp&nbsp- îòíîñèòåëüíîå óäëèíåíèå ïðè ðàñòÿæåíèè;
ε’ &nbsp&nbsp&nbsp- îòíîñèòåëüíûå ïîïåðå÷íûå äåôîðìàöèè.

&nbsp&nbsp&nbspÏðè äîñòàòî÷íî áîëüøèõ âíåøíèõ íàãðóçêàõ (è, êàê ñëåäñòâèå, áîëüøèõ âíóòðåííèõ íàïðÿæåíèÿõ) ìåæàòîìíûå ñâÿçè ìàòåðèàëà ìîãóò
áûòü ðàçîðâàíû, ÷òî ïðèâåäåò ê ðàçðóøåíèþ êîíñòðóêöèè.
&nbsp&nbsp&nbspÊîíñòðóêöèÿ äîëæíà áûòü ñïðîåêòèðîâàíà òàê, ÷òîáû îíà íå ðàçðóøèëàñü ïîä íàãðóçêîé. Äåôîðìàöèè (ïåðåìåùåíèÿ), êîòîðûå
íåèçáåæíî âîçíèêàþò â êîíñòðóêöèè ïîä íàãðóçêîé, äîëæíû áûòü âïîëíå îïðåäåëåííûìè è äîñòàòî÷íî ìàëûìè, ïîñêîëüêó âûáðàííûå ðàçìåðû è ôîðìà
ýëåìåíòîâ êîíñòðóêöèè îáåñïå÷èâàþò îïðåäåëåííîå êà÷åñòâî åå ôóíêöèîíèðîâàíèÿ.
&nbsp&nbsp&nbspÒàê, èçìåíåíèå ïîä íàãðóçêîé ðàçìåðîâ è ôîðìû ýëåìåíòîâ êîíñòðóêöèè ñàìîëåòà, îáòåêàåìûõ ïîòîêîì âîçäóõà, ñóùåñòâåííûì îáðàçîì
âëèÿåò íà àýðîäèíàìè÷åñêèå õàðàêòåðèñòèêè è, êàê ñëåäñòâèå, — íà ëåòíî-òåõíè÷åñêèå õàðàêòåðèñòèêè ñàìîëåòà.
&nbsp&nbsp&nbspÕàðàêòåð ðàáîòû êîíñòðóêöèè ïîä íàãðóçêîé âî ìíîãîì îïðåäåëÿåòñÿ âûáîðîì êîíñòðóêöèîííûõ
ìàòåðèàëîâ
. Îäíîé èç îñíîâíûõ õàðàêòåðèñòèê ìàòåðèàëà êîíñòðóêöèè ÿâëÿåòñÿ äèàãðàììà ðàñòÿæåíèÿ (êðèâàÿ äåôîðìèðîâàíèÿ) — âçàèìîçàâèñèìîñòü íàïðÿæåíèé è äåôîðìàöèé
óäëèíåíèÿ, ïîëó÷àåìàÿ â ðåçóëüòàòå èñïûòàíèé îáðàçöîâ ìàòåðèàëîâ íà ðàñòÿæåíèå. Íà ðèñ. 10.5 ïîêàçàí òèïè÷íûé õàðàêòåð äèàãðàìì ðàñòÿæåíèÿ äëÿ
íåêîòîðûõ êîíñòðóêöèîííûõ ìàòåðèàëîâ, ïðèìåíÿåìûõ â ñàìîëåòîñòðîåíèè.

График напряжений при растяжении

Ðèñ. 10.5. Äèàãðàììà ðàñòÿæåíèÿ

&nbsp&nbsp&nbspÏðÿìîëèíåéíûå íà íåêîòîðîì ïðîòÿæåíèè äèàãðàììû ó÷àñòêè (0-À, 0-ÀÂ) õàðàêòåðèçóþò òàêóþ ñòàäèþ äåôîðìèðîâàíèÿ îáðàçöà,
êîãäà ïðè óâåëè÷åíèè íàãðóçêè äåôîðìàöèè ïðîïîðöèîíàëüíû íàïðÿæåíèÿì è ïðè ñíÿòèè íàãðóçêè èñ÷åçàþò, ò. å. îáðàçåö çà ñ÷åò ìåæàòîìíûõ ñâÿçåé
(ñèë óïðóãîñòè) âîçâðàùàåòñÿ â èñõîäíîå (íåäåôîðìèðîâàííîå) ñîñòîÿíèå. Íà ýòîì ó÷àñòêå ìàòåðèàë «ïîä÷èíÿåòñÿ»
çàêîíó Ãóêà
(ïî èìåíè àíãëèéñêîãî åñòåñòâîèñïûòàòåëÿ
Ð. Ãóêà):

σ = Åε,

ãäå&nbsp&nbsp&nbsp σ &nbsp&nbsp&nbsp- íàïðÿæåíèå, Ïà;
E &nbsp&nbsp&nbsp- ìîäóëü óïðóãîñòè ìàòåðèàëà, èëè ìîäóëü Þíãà (ïî èìåíè àíãëèéñêîãî ó÷åíîãî
Ò.Þíãà), Ïà;
ε &nbsp&nbsp&nbsp- îòíîñèòåëüíîå óäëèíåíèå.

&nbsp&nbsp&nbspÌîäóëü óïðóãîñòè Å (íàêëîí êðèâîé äåôîðìèðîâàíèÿ â çîíå óïðóãîñòè
0-À (0-ÀÂ) äèàãðàììû: Å = tgα) ÿâëÿåòñÿ ìåðîé óïðóãîñòè («æåñòêîñòè») è õàðàêòåðèçóåò ïîäàòëèâîñòü (ñïîñîáíîñòü ê
äåôîðìèðîâàíèþ) ïîä íàãðóçêîé. Îòìåòèì, ÷òî ñòàëü — áîëåå æåñòêèé, ìåíåå ïîäàòëèâûé ìàòåðèàë, ÷åì àëþìèíèåâûé ñïëàâ.
&nbsp&nbsp&nbspÒî÷êà À (ÀÂ) íà äèàãðàììàõ õàðàêòåðèçóåò íàèáîëüøóþ íàãðóçêó Ðïö è, ñîîòâåòñòâåííî,
íàïðÿæåíèÿ

ïðåäåëà ïðîïîðöèîíàëüíîñòè
σïö
, ïðè êîòîðûõ åùå ñîáëþäàåòñÿ ëèíåéíàÿ
çàâèñèìîñòü σ — ε.
&nbsp&nbsp&nbspÄàëüøå, çà òî÷êîé À (ÀÂ), ëèíåéíàÿ çàâèñèìîñòü σ — ε íàðóøàåòñÿ, ìàòåðèàë äåôîðìèðóåòñÿ («òå÷åò»)
ïîä íàãðóçêîé è ïðè ñíÿòèè íàãðóçêè íå âîçâðàùàåòñÿ ê èñõîäíîìó ñîñòîÿíèþ, â íåì âîçíèêàþò îñòàòî÷íûå ïëàñòè÷åñêèå
äåôîðìàöèè
çà ñ÷åò òîãî, ÷òî ÷àñòü ìåæàòîìíûõ ñâÿçåé ðàçðóøàåòñÿ. Òî÷êà  íà äèàãðàììàõ õàðàêòåðèçóåò íàãðóçêó
Ðò è, ñîîòâåòñòâåííî,
íàïðÿæåíèÿ ïðåäåëà òåêó÷åñòè

σò, ïðè êîòîðûõ ìàòåðèàë «òå÷åò» áåç óâåëè÷åíèÿ íàãðóçêè. Íåêîòîðûå ìàòåðèàëû (íàïðèìåð, 4, ñì. ðèñ. 10.5)
èìåþò ÿâíî âûðàæåííóþ ïëîùàäêó òåêó÷åñòè À-Â, ãäå äåôîðìàöèè ñóùåñòâåííî óâåëè÷èâàþòñÿ áåç óâåëè÷åíèÿ
âíåøíåé íàãðóçêè. Äëÿ äðóãèõ ìàòåðèàëîâ (1, 2, 3) ïëîùàäêè òåêó÷åñòè îòñóòñòâóþò, â ýòîì ñëó÷àå òî÷êè À è  íà äèàãðàììå ïðàêòè÷åñêè
ñîâïàäàþò.
&nbsp&nbsp&nbspÇîíà Â-Ñ äèàãðàììû íàçûâàåòñÿ çîíîé óïðî÷íåíèÿ. Çäåñü ïîñëå ñòàäèè òåêó÷åñòè
ìàòåðèàë ñíîâà ïðèîáðåòàåò ñïîñîáíîñòü óâåëè÷èâàòü ñîïðîòèâëåíèå äàëüíåéøåé äåôîðìàöèè, îäíàêî äëÿ óäëèíåíèÿ îáðàçöà â ýòîé çîíå òðåáóåòñÿ â
ñîòíè ðàç áîëåå ìåäëåííîå íàðàñòàíèå íàãðóçêè, ÷åì â çîíå óïðóãèõ äåôîðìàöèé.

График напряжений при растяжении

Ðèñ. 10.6. Äèàãðàììà èñòèííûõ íàïðÿæåíèé

&nbsp&nbsp&nbspÒî÷êà Ñ äèàãðàììû õàðàêòåðèçóåò ìàêñèìàëüíóþ (ïðåäåëüíóþ) íàãðóçêó Ðmax è, ñîîòâåòñòâåííî,
íàïðÿæåíèÿ ïðåäåëà ïðî÷íîñòè èëè íàïðÿæåíèÿ âðåìåííîãî ñîïðîòèâëåíèÿ σâ, ïðè êîòîðûõ åùå ñîõðàíÿåòñÿ öåëîñòíîñòü
ýëåìåíòà êîíñòðóêöèè, íàãðóæåííîãî ðàñòÿæåíèåì.
&nbsp&nbsp&nbspÄàëüøå, çà òî÷êîé Ñ äèàãðàììû, áåç óâåëè÷åíèÿ âíåøíåé íàãðóçêè èäåò ëàâèíîîáðàçíîå ðàçðóøåíèå ìåæàòîìíûõ ñâÿçåé
ìàòåðèàëà.
&nbsp&nbsp&nbspÍàïðÿæåíèå σâ, òàêèì îáðàçîì, õàðàêòåðèçóåò ïðî÷íîñòü ìàòåðèàëà íà ðàçðûâ.
&nbsp&nbsp&nbspÒî÷êà D äèàãðàììû õàðàêòåðèçóåò ðàçðóøåíèå (ðàçðûâ) îáðàçöà. Íèñõîäÿùàÿ âåòâü äèàãðàììû Ñ-D èìååò óñëîâíûé
õàðàêòåð, ïîñêîëüêó íàïðÿæåíèÿ ðàññ÷èòûâàþòñÿ äëÿ ïëîùàäè ïîïåðå÷íîãî ñå÷åíèÿ èñõîäíîãî îáðàçöà. Ðåàëüíî íàïðÿæåíèÿ ðàñòóò, ÷òî ïîêàçûâàåò
äèàãðàììà èñòèííûõ íàïðÿæåíèé (ðèñ. 10.6 — ïóíêòèðíàÿ ëèíèÿ),
â êîòîðîé íàïðÿæåíèÿ ðàññ÷èòûâàþòñÿ äëÿ èñòèííîé ïëîùàäè ïîïåðå÷íîãî ñå÷åíèÿ îáðàçöà.  èíòåðâàëå Î-À ðîñò íàïðÿæåíèÿ èäåò áåç
ðàçðóøåíèÿ ìåæàòîìíûõ ñâÿçåé, ïîñëå ñíÿòèÿ íàãðóçêè îáðàçåö âîçâðàùàåòñÿ ê èñõîäíîìó ñîñòîÿíèþ. Â èíòåðâàëå À-D ðîñò íàïðÿæåíèÿ
ïðîèñõîäèò çà ñ÷åò ðàçðóøåíèÿ ìåæàòîìíûõ ñâÿçåé è çíà÷èòåëüíîãî ìåñòíîãî óòîíåíèÿ îáðàçöà (îáðàçîâàíèÿ
øåéêè 1).  ìîìåíò ðàçðóøåíèÿ (òî÷êà D äèàãðàììû) ïëîùàäü ïîïåðå÷íîãî ñå÷åíèÿ ïëàñòè÷åñêè
äåôîðìèðîâàííîãî îáðàçöà ìåíüøå èñõîäíîé.
&nbsp&nbsp&nbspÏðî÷íîñòü êîíñòðóêöèè, åñòåñòâåííî, çàâèñèò îò ïðî÷íîñòè ìàòåðèàëà, èç êîòîðîãî îíà èçãîòîâëåíà.
&nbsp&nbsp&nbspÏðî÷íîñòü
(íåñóùàÿ ñïîñîáíîñòü)
êîíñòðóêöèè
— ýòî ñïîñîáíîñòü êîíñòðóêöèè â îïðåäåëåííûõ óñëîâèÿõ âîñïðèíèìàòü (âûäåðæèâàòü) áåç
ðàçðóøåíèÿ âíåøíèå íàãðóçêè.
Íàãðóçêà, ïðè êîòîðîé ïðîèñõîäèò ðàçðóøåíèå êîíñòðóêöèè, íàçûâàåòñÿ
ðàçðóøàþùåé.

График напряжений при растяжении

Ðèñ. 10.7. Òðàåêòîðèè íàïðÿæåíèé

&nbsp&nbsp&nbspÍåñóùàÿ ñïîñîáíîñòü âî ìíîãîì çàâèñèò îò ïëàñòè÷íîñòè ìàòåðèàëà. Ïëàñòè÷íîñòü

— ñïîñîáíîñòü ìàòåðèàëà ïîëó÷àòü áîëüøèå îñòàòî÷íûå äåôîðìàöèè, íå ðàçðóøàÿñü. Õðóïêîñòü

(ñâîéñòâî, ïðîòèâîïîëîæíîå ïëàñòè÷íîñòè) — ñïîñîáíîñòü ìàòåðèàëà ðàçðóøàòüñÿ áåç çàìåòíîé ïëàñòè÷åñêîé äåôîðìàöèè.
&nbsp&nbsp&nbspÆåñòêîñòü — ñïîñîáíîñòü êîíñòðóêöèè ñîïðîòèâëÿòüñÿ äåéñòâèþ âíåøíèõ íàãðóçîê
ñ äîïóñòèìûìè â ýêñïëóàòàöèè äåôîðìàöèÿìè, íå íàðóøàþùèìè ðàáîòîñïîñîáíîñòü êîíñòðóêöèè.
&nbsp&nbsp&nbspÍåñóùàÿ ñïîñîáíîñòü êîíñòðóêöèè ðåçêî ñíèæàåòñÿ èìåþùèìèñÿ â ìàòåðèàëå êîíñòðóêöèè ìèêðîòðåùèíàìè, âêðàïëåíèÿìè
èíîðîäíûõ ìàòåðèàëîâ, íàðóøàþùèìè ïîñòîÿíñòâî íàïðÿæåíèé.
&nbsp&nbsp&nbspÊîíöåíòðàòîðû íàïðÿæåíèé

— ìåñòíûå ðåçêèå èçìåíåíèÿ îäíîðîäíîñòè (ôîðìû è, ñëåäîâàòåëüíî, æåñòêîñòè) êîíñòðóêöèè, ïðèâîäÿùèå ê ðåçêîìó ìåñòíîìó
(ëîêàëüíîìó) ïîâûøåíèþ íàïðÿæåíèé â êîíñòðóêöèè.
&nbsp&nbsp&nbspÍà ðèñ. 10.7 ïîêàçàíî äåéñòâèå ðàñòÿãèâàþùåé âíåøíåé íàãðóçêè, ðàâíîìåðíî ðàñïðåäåëåííîé ïî êðàÿì ïðîñòåéøèõ êîíñòðóêòèâíûõ
ýëåìåíòîâ — ëèñòîâ. Ïóíêòèðíûå ëèíèè ïðåäñòàâëÿþò ñîáîé òàê íàçûâàåìûå òðàåêòîðèè íàïðÿæåíèé, âäîëü êîòîðûõ íàïðÿæåíèå ïåðåäàåòñÿ îò
ìîëåêóëû ê ìîëåêóëå. Äëÿ ãëàäêîãî ëèñòà ýòè ëèíèè ïàðàëëåëüíû, íàïðÿæåíèÿ â ëþáîì ñå÷åíèè ëèñòà îäèíàêîâû.

График напряжений при растяжении

Ðèñ. 10.8. ïåðåäà÷à íàãðóçêè â ñîåäèíåíèè

&nbsp&nbsp&nbspÑèëû, ïåðåäàþùèåñÿ ïî òðàåêòîðèÿì íàïðÿæåíèé â ëèñòàõ ñ êîíöåíòðàòîðàìè (íàäðåç â êðîìêå ëèñòà, îòâåðñòèå â öåíòðå ëèñòà),
îáõîäÿò ðàçðûâ â ìàòåðèàëå. Ïëîòíîñòü òðàåêòîðèé íàïðÿæåíèé óâåëè÷èâàåòñÿ, è ëîêàëüíûå íàïðÿæåíèÿ σ ó êðàÿ êîíöåíòðàòîðà âîçðàñòàþò
(èíîãäà ìíîãîêðàòíî). Â ýòèõ ìåñòàõ ìîæåò ïðîèçîéòè íàðóøåíèå (ðàçðûâ) ìåæàòîìíûõ ñâÿçåé, âîçíèêíóò ìèêðîòðåùèíû, ðàñïðîñòðàíåíèå êîòîðûõ âåäåò
ê ðàçðóøåíèþ êîíñòðóêöèè.
&nbsp&nbsp&nbspÐàñïðåäåëåíèå íàïðÿæåíèé â çàêîíöîâêàõ (ìåñòàõ ñîåäèíåíèÿ äåòàëåé)
îáû÷íî îñîáåííî
ñëîæíî, â íèõ îáÿçàòåëüíî ïîÿâëÿþòñÿ êîíöåíòðàöèè íàïðÿæåíèé
— ìåñòíîå ïîâûøåíèå íàïðÿæåíèé.
&nbsp&nbsp&nbsp ìåñòå ñîåäèíåíèÿ (ðèñ. 10.8) ëèñòîâ 1 è 3 ñ ïîìîùüþ çàêëåïîê (èëè ñâàðíûõ òî÷åê) 2 ïåðåäà÷à
íàãðóçêè áóäåò
ïðîèñõîäèòü òîëüêî ÷åðåç òî÷êè êðåïëåíèÿ. Ëèñòû ðàâíîìåðíî âêëþ÷àòñÿ â ðàáîòó íà äîñòàòî÷íî áîëüøîì óäàëåíèè îò ìåñòà
ñîåäèíåíèÿ.
&nbsp&nbsp&nbspÇàøòðèõîâàííàÿ îáëàñòü ëèñòîâ ïðàêòè÷åñêè âûêëþ÷åíà èç ðàáîòû è íå èñïûòûâàåò íàïðÿæåíèé.  òî æå âðåìÿ
íàïðÿæåíèÿ â ïîïåðå÷íûõ ñå÷åíèÿõ ëèñòîâ ðàñïðåäåëåíû íåðàâíîìåðíî, ïðè÷åì σÀ-À > σÁ-Á > σÂ-Â.
&nbsp&nbsp&nbspÊîíñòðóêòîð îñîáîå âíèìàíèå äîëæåí óäåëÿòü âûáîðó ôîðìû äåòàëåé, ðàáîòàþùèõ íà ðàñòÿæåíèå, è îñîáåííî èõ
çàêîíöîâîê, ÷òîáû óìåíüøèòü âîçìîæíûå êîíöåíòðàöèè íàïðÿæåíèé.

Источник

Читайте также:  Растяжение шеи симптомы лечение