График на растяжение сопромат

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]

Диаграмма растяжения

Рис. 1 Диаграмма растяжения стального образца

Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.

Построение диаграммы

Рассмотрим подробнее процесс построения диаграммы.

В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).

На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.

После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.

В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.

После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).

Рис. 2 Стальной образец с «шейкой»

Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».

В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»

Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:

W=0,8Fmax∙Δlmax

По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.

Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.

Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >

Источник

Растяжение  (сжатие) – это такой   вид нагружения стержня, при котором в его поперечном сечении возникает внутренняя продольная сила Ν, действующая вдоль центральной оси z.

Продольная сила Ν – это равнодействующая всех внутренних нормальных сил в сечении. Для вычисления продольной силы применяется метод сечений.

2014-09-07 19-04-45 Скриншот экрана

Продольная сила Ν численно равна алгебраической сумме проекций всех сил, действующих по одну сторону от рассматриваемого сечения,  на продольную ось бруса.

Правило знаков для продольной силы Ν: при растяжении продольная сила положительна, при сжатии – отрицательна.

2014-09-07 19-09-39 Скриншот экрана

График изменения продольных сил по длине стержня называется эпюрой. Эпюра N строится методом сечений на характерных участках бруса. Строится эпюра для использования ее при расчете бруса на прочность. Она дает возможность найти наибольшие значения продольных сил и положение сечений, в которых они возникают.

При растяжении (сжатии) возникают только нормальные напряжения. Согласно гипотезе Я. Бернулли (или гипотеза плоских сечений) в поперечных сечениях, удаленных от места приложения нагрузок, нормальные напряжения распределяются по сечению практически равномерно, а сами сечения, перпендикулярные к оси стержня z, остаются плоскими в процессе нагружения.

Нормальные напряжения в сечении при  растяжении (сжатии) вычисляются по формуле

где Аплощадь поперечного сечения.

Правило знаков для σ совпадает с правилом знаков для N.

В наклонном сечении, нормаль к которому составляет угол α с осью стержня z,

При растяжении в продольном направлении стержень удлиняется, а его поперечные размеры уменьшаются, при сжатии, напротив, в продольном направлении стержень укорачивается, а его поперечные размеры увеличиваются; Δℓ — абсолютное удлинение или укорочение участка стержня длиной ℓ, Δbабсолютная поперечная деформация.

Относительное удлинение или укорочение участка стержня длиной ℓ, называемое линейной деформацией, определяется следующим образом

ε=Δℓ/ℓ.

Экспериментально установлено, что в определенной области нагрузок при упругом поведении материала между нормальными напряжениями и линейными деформациями существует линейная зависимость (закон Гука для напряжений)

σ=εЕ,

где Е – модуль продольной упругости или модуль Юнга, это физическая const. Для каждого из материалов величина модуля упругости имеет свое значение:

сталь, Е = 2.105 МПа,

медь, Е = 1.105 МПа,

алюминий, Е = 0,7.105 МПа.

Значение модуля упругости устанавливается экспериментально.

Согласно закону Гука (данную запись называют законом Гука для деформаций)

Δℓ=Νℓ/ЕА

Произведение ЕА – называется жесткостью стержня при растяжении – сжатии.

Перемещение произвольного сечения ступенчатого стержня

w=∑Δℓi

Относительная поперечная деформация:

ε′=Δb/b

где b – поперечный размер стержня.

Эксперименты также показывают, что в упругой стадии деформирования между продольной и поперечной деформациями существует взаимосвязь

μ  =│ε′⁄ε│ — const,

где   μ —  коэффициент Пуассона, берется по модулю ,поскольку у продольной и поперечной деформации разные знаки (при растяжении продольные волокна увеличиваются, а поперечные уменьшаются в размере).

Для твердых материалов имеет значения коэффициент Пуассона

0≤μ ≤0,5

Изменение температуры стержня вызывает его удлинение (при нагревании) или укорочение (при охлаждении)

2014-09-01 22-02-54 Скриншот экрана

где — a- коэффициент линейного температурного расширения; Δtº=(tºк-tºн) — изменение температуры между значениями начальным (tºн) и конечным (tºк).

Статически неопределимыми называют системы, имеющие лишние связи – внешние или внутренние.

Для определения внутренних усилий в таких системах недостаточно рассматривать только уравнения равновесия.

В этом случае требуются дополнительные уравнения, число которых равно количеству лишних связей. Дополнительные уравнения составляются на основе анализа картины деформирования системы и использования законов деформирования ее элементов.

Алгоритм решения подобных задач включает следующее:

1)   Статическая часть. Составляются уравнения равновесия с включением неизвестных усилий, действующих по направлению лишних связей.

2)    Геометрическая часть. Составляются уравнения, описывающие взаимосвязь перемещений характерных точек, удлинений и укорочений отдельных стержней между собой.

3)   Физическая связь. Записываются законы деформирования отдельных стержней системы.

Порядок расчета статически неопределимых брусьев

  1.  Задаться направлениями возможных опорных реакций и составить уравнение      статики для всей системы в целом.
  2. Определить степень статической неопределимости и использовать метод сечений с целью выразить неизвестные усилия через неизвестные опорные реакции. При этом неизвестные продольные силы (N) следует предполагать положительными и поэтому направлять «от сечения».
  3. Сформулировать условие совместности деформаций участков бруса.
  4. В процессе превращения условия совместности в уравнение совместности деформаций различий в характере деформаций участков не учитывать.
Читайте также:  Растяжение связок стопы что это

Порядок расчета статически неопределимых шарнирно-стержневых систем

  1. Задаться направлениями опорных реакций, но уравнений равновесия для всей системы не составлять, а сразу использовать метод сечений и составить уравнения статики для выделенной части системы.
  2. Определить степень статической неопределимости как разницу между количеством всех неизвестных, оказавшихся в уравнениях статики, и числом самих этих уравнений.
  3. Рассмотреть (изобразить) любую возможную картину деформаций системы и из ее анализа сформулировать условия совместности деформаций стержней системы (столько, какова степень статической неопределимости).
  4. В процессе преобразования условий совместности в уравнения совместности деформаций обязательно учитывать различие в характере деформаций стержней (т.е. вводить удлинение со знаком «плюс», а укорочение со знаком «минус») в соответствии с той картиной деформации, которую мы рассматриваем.

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

Читайте также:  Растяжение подколенной связки лечение

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

При проектном расчете определяется площадь опасного сечения стержня:

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Механические характеристики материалов (т. е. величины, характеризующие их прочность, пластичность и т. д., а также модуль упругости и коэффициент Пуассона) определяются путем испытаний специальных образцов, изготовленных из исследуемого материала.

Наиболее распространенными являются статические испытания на растяжение. Для некоторых строительных материалов — камня, цемента, бетона и т. д. — основными являются испытания на сжатие. Испытания проводятся на специальных машинах различных типов. Сведения об устройстве этих машин и методике испытаний, а также о применяемых при этом измерительных приборах приводятся в специальных руководствах.

В процессе испытания специальное устройство автоматически вычерчивает график, изображающий (в прямоугольной системе координат) зависимость между действующей на образец продольной силой и удлинением (или укорочением) образца, т. е. вычерчивает диаграмму в координатах «сила—удлинение».

Для изучения свойств материала значительно удобнее иметь диаграммы, построенные в координатах «напряжение — относительная деформация».

На рис. 10.2 представлена диаграмма растяжения малоуглеродистой стали по оси ординат отложены напряжения а, а по оси абсцисс — относительные удлинения е.

Рис. 10.2

Пока растягивающие напряжения не достигают некоторой величины огпц, диаграмма представляет собой прямую линию, т. е. относительные удлинения 6 прямо пропорциональны напряжениям о; иными словами, до этого предела справедлив закон Гука. Напряжение называется пределом пропорциональности.

После достижения предела пропорциональности деформации растут не прямо пропорционально напряжениям, а быстрее. Начиная с того момента, когда напряжения достигнут некоторой величины деформации растут без увеличения напряжений, и на диаграмме получается участок, параллельный оси абсцисс. Это явление называется текучестью материала, а напряжение — пределом текучести.

Участок диаграммы, параллельный оси абсцисс, называется площадкой текучести. При текучести стали отшлифованная блестящая поверхность образца становится матовой, и на ней можно обнаружить появление линий, наклоненных к его оси под углом примерно 45° (рис. 11.2).

Эти линии называются линиями Чернова — по имени знаменитого русского металлурга Д. К. Чернова (1839—1921), впервые обнаружившего их.

Металлографические исследования показывают, что текучесть сопровождается сдвигами в кристаллах стали; следами этих сдвигов и являются линии Чернова.

При дальнейшем растяжении образца напряжения (а следовательно, и растягивающая сила) вновь начинают повышаться. Участок диаграммы 1—3 от конца площадки текучести до наивысшей точки (см. рис. 10.2) называют зоной упрочнения.

Наибольшее условное напряжение, выдерживаемое образцом, называется пределом прочности, или временным сопротивлением, и обозначается (применяется также обозначение ). Это напряжение соответствует точке 3 диаграммы. Последующее растяжение образца сопровождается уменьшением растягивающей силы. Следовательно, предел прочности представляет собой отношение наибольшей силы, которую выдерживает образец, к первоначальной площади его поперечного сечения.

Рис. 11.2

Рис. 12.2

При увеличении нагрузки в зоне упрочнения на образце появляется местное сужение; образуется так называемая шейка (рис. 12.2), в пределах которой и происходит затем разрыв образца. При этом условное напряжение в образце (определяемое делением величины растягивающей силы на первоначальную площадь поперечного сечения образца) уменьшается соответственно уменьшению величины растягивающей силы (участок 3—4 на рис. 10.2). Истинное напряжение по сечению шейки (т. е. напряжение, отнесенное к площади поперечного сечения шейки) при этом возрастает, как показано на рис. 10.2 штриховой линией 3—5.

Различие между истинным и условным напряжениями имеется не только после достижения предела прочности (точка 3 на рис. 10.2), но на любой стадии испытания, так как в результате поперечной деформации поперечное сечение растянутого образца уменьшается. Однако это различие до нагрузки, соответствующей временному сопротивлению материала, весьма мало.

Следует отметить, что при проектировании напряжения в конструкциях определяют без учета изменения размеров их элементов, а потому используют значения условных (а не истинных) напряжений, полученные при испытаниях образцов.

Если испытываемый образец нагрузить растягивающей силой, не превышающей некоторой величины, называемой пределом упругости, а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по какому они увеличивались при нагружении (диаграмма при разгрчжении и нагружении изображается одной и той же линией). Следовательно, в этом случае в образце возникали только упругие деформации.

Предел упругости подавляющего большинства материалов практически совпадает с пределом пропорциональности. Если образец нагружен выше предела упругости, то при его разгрузке деформации полностью не исчезают и на диаграмме линия разгрузки представляет собой прямую (1—2 или на рис. 10.2), уже не совпадающую с линией нагружения. В этом случае деформация образца состоит из упругой и остаточной — пластической деформации.

При повторном нагружении образца диаграмма изображается сначала прямой 2—1 (или ), т. е. той же прямой, которая характеризует разгрузку образца, а затем кривой 1—3—4 (или 1′-3′-4′). Таким образом, при повторном нагружении предел пропорциональности повышается до того напряжения, до которого образец был ранее нагружен. Это явление называется наклепом.

Явление наклепа часто используется в технике; например, для уменьшения провисания проводов их предварительно вытягивают для создания в них наклепа. В случаях, когда наклеп нежелателен (так как он повышает хрупкость материала), его можно устранить путем отжига детали.

Материалы, разрушению которых предшествует возникновение значительных остаточных деформаций, называются пластичными. К ним, в частности, относится сталь диаграмма растяжения которой представлена на рис. 10.2.

Степень пластичности материала может быть охарактеризована величинами остаточного относительного удлинения образца, доведенного при растяжении до разрыва, и остаточного относительного сужения шейки образца. Чем больше эти величины, тем пластичнее материал.

Остаточным относительным удлинением 5 (дельта) называется отношение остаточной деформации образца к первоначальной его длине Величина этого отношения для различных марок конструкционной стали находится в пределах от 8 до 28%:

Читайте также:  Растяжение медиальной мышцы бедра

где — длина образца после разрыва, измеряемая после соединения частей разорванного образца.

Остаточным относительным сужением называется отношение изменения площади поперечного сечения образца в месте разрыва к первоначальной площади поперечного сечения. Величина этого отношения находится в пределах от нескольких процентов для хрупкой высокоуглеродистой стали до для малоуглеродистой стали:

где — площадь поперечного сечения разорванного образца в наиболее тонком месте шейки.

Для стали (по ГОСТ 380—60):

Величина модуля упругости Е практически не зависит от химического состава и термической обработки стали.

Приведенный здесь предел прочности установлен экспериментальным путем. Он во много раз (в 100 раз и более) меньше теоретических значений, подсчитанных исходя из сил межатомных связей. Это объясняется отклонением строения реальных кристаллов металла от идеального строения кристаллических решеток, т. е. несовершенством (дефектами) кристаллических решеток реальных металлов. Наибольшее влияние на снижение прочности металла оказывают чисто геометрические нарушения идеального строения кристаллов, называемые дислокацией. Другие нарушения (атомные пропуски — вакансии, расположение чужеродных атомов в межузлиях решетки и т. д.) незначительно влияют на прочность металла.

Дислокации возникают при кристаллизации металлов, повышении температуры и т. п.

Теория дислокации стала создаваться лишь в последние годы. Тем не менее на основе этой теории уже разрабатываются принципиально новые методы повышения прочности металлов. Для весьма малых образцов уже достигнута прочность чистого железа, превышающая

Некоторые пластичные материалы, например дюралюмий, не имеют на диаграмме растяжения площадки текучести (рис. 13.2). Для таких материалов вводится понятие условного предела текучести, в качестве которого принимается напряжение, соответствующее остаточной деформации 0,2%. Эта механическая характеристика обозначается

С повышением содержания углерода в стали ее предел прочности повышается, а степень пластичности уменьшается.

Диаграмма растяжения среднеуглеродистой стали не имеет площадки текучести (примерный характер такой диаграммы представлен на рис. 14.2) и в качестве предела текучести для нее принимается величина Высокоуглеродистая закаленная сталь (с содержанием углерода порядка 0,7% и выше) представляет собой хрупкий материал, дающий при разрыве незначительное остаточное удлинение.

Весьма хрупким материалом является чугун. Для образцов из обычного серого литейного чугуна относительное остаточное удлинение при разрыве не превышает 0,015%.

Рис. 13.2

Рис. 14.2

При разрыве образцов из хрупких материалов шейка не образуется и растягивающее усилие растет до момента разрушения.

Диаграмма сжатия пластичной стали представлена на рис. 15.2. При сжатии образец расплющивается, и площадь его сечения увеличивается, в связи с чем увеличиваются также величины сжимающей силы и условных напряжений (т. е. напряжений, отнесенных к первоначальной площади поперечного сечения образца).

Рис. 15.2

Рис. 16.2

Таким образом, понятие предела прочности при сжатии пластичной стали лишено физического смысла. Пределы текучести при растяжении и сжатии для одной и той же пластичной стали практически одинаковы.

Хрупкие материалы, например чугун, имеют несколько иную диаграмму сжатия. Деформации чугуна очень малы; они с самого начала не следуют закону Гука, а потому диаграмма получается криволинейной (кривая на рис. 16.2, а); однако участок диаграммы, соответствующий малым напражениям, лишь незначительно отличается от прямой.

Диаграмма растяжения чугуна (кривая II на рис. 16.2, а) по характеру аналогична диаграмме сжатия, но предел прочности при растяжении зничительно ниже, чем предел прочности при сжатии . Иными словами, чугун значительно хуже работает на растяжение, чем на сжатие. При сжатии чугунный образец разрушается в результате образования наклонных трещин, направленных примерно под углом 45° к оси образца (как это показано на рис. 16.2, б), т. е. параллельно площадкам, в которых действуют наибольшие касательные напряжения.

Некоторые материалы обладают различными свойствами в различных направлениях.

Рис. 17.2

Рис. 18.2

Такие материалы называются анизотропными. Анизотропным материалом является, например, сосна, сопротивляемость которой существенно зависит от направления силы по отношению к направлению волокон. Сопротивление сосны вдоль волокон значительно больше, чем поперек волокон, а величина деформаций меньше. На рис. 17.2 показаны диаграммы сжатия сосны вдоль волокон (а) и поперек волокон (б).

Для сухой сосны средние значения предела прочности на сжатие вдоль волокон составляют примерно модуля упругости Для сжатия поперек волокон предел прочности составляет примерно 50 кгс/см2, а модуль упругости — Предел прочности сосны при растяжении вдоль волокон приблизительно вдвое больше, чем при сжатии. Модуль упругости при растяжении несколько больше, чем при сжатии, но для расчетов он принимается таким же, как и при сжатии.

Деформации некоторых материалов и напряжения в них изменяются во времени; это явление называется ползучестью. Если к такому материалу приложена постоянная нагрузка, то его деформация сначала нарастает быстро, а затем все медленнее — пока нарастание ее не прекратится; такой частный случай ползучести называется последействием. Если после снятия нагрузки через некоторый промежуток времени первоначальные размеры тела полностью восстанавливаются, то такое поведение материала называется упругим последействием.

Другим частным слхчаем ползучести является релаксация, представляющая собой процесс уменьшения напряжений в материале при неизменной величине его деформации, например уменьшение со временем растягивающего усилия в затянутых болтах.

Кратко рассмотрим теперь свойства пластмасс, которые в последнее время находят все более широкое применение в различных отраслях промышленности и строительства.

Пластмассы представляют собой искусственные смолы, в которые, как правило, введен какой-либо наполнитель (древесный, стекловолокнистый, металлический порошок и др.). Достоинством пластмасс является малый удельный вес, высокая стойкость к агрессивным средам, малая теплопроводность, хороший внешний вид изделий, простота технологии их изготовления.

Важнейшими из пластмасс являются: текстолит и древеснослоистые пластики, применяемые в машиностроении для изготовления зубчатых колес и вкладышей подшипников; винипласт, поливинилхлорид и полиэтилен, применяемые, в частности для изготовления различных трубопроводов; стекловолокнистые анизотропные материалы (СВАМ), имеющие весьма широкие перспективы применения в электротехнической и радиотехнической (электроизоляционные материалы и различная арматура), судостроительной (корпуса катеров, баки и т. д.), автомобильной (кузова автомашин и прицепов), химической (трубы и резервуары), нефтяной (различного рода трубы и резервуары) и других отраслях промышленности, а также в строительстве (панели и плиты для стен и перекрытий, арматура для бетона и др.) и на железнодорожном транспорте (корпуса вагонов, цистерны).

СВАМ является высокопрочным материалом с пределом прочности примерно 5000 и 9000 кгс/см2 (при отношении числа продольных слоев к числу поперечных соответственно 1:1 и 10:1), обладающим в то же время малым удельным весом — всего 1,9.

Жесткость СВАМа весьма высока; так, при растяжении вдоль волокон (для СВАМа 1:1), т. е. величина Е лишь вдвое меньше, чем у дюралюмина. Следует заметить, что наименьшее значение () модуль упругости имеет при растяжении под углом 45° к направлению волокон.

На рис. 18.2 показана диаграмма, полученная пр?