Гибкость растяжение и сжатие

Гибкость растяжение и сжатие thumbnail

В инженерной практике часто имеют место случаи одновременного действия на стержень поперечных и продольных нагрузок, причем последние могут быть приложены внецентренно. Такой случай показан на рис. 11.26. При этом внутренние усилия в заделке равны:

Гибкость растяжение и сжатиеГибкость растяжение и сжатие

Рис. 11.26

Гибкость растяжение и сжатие

Рис. 11.27

В общем случае растяжения или сжатия с изгибом внутренние усилия определяются раздельно от действия всех составляющих нагрузок. Нормальные напряжения в поперечных сечениях определяются по общей формуле

Гибкость растяжение и сжатие

Приравняв это выражение нулю, получим уравнение нулевой линии

Гибкость растяжение и сжатие

Положив в этом уравнении последовательно у = 0 и z = О, получим формулы для определения отрезков, отсекаемых нулевой линией на осях координат:

Гибкость растяжение и сжатие

Как и во всех рассмотренных выше случаях сложного сопротивления, наибольшие растягивающие и сжимающие напряжения действуют в точках сечения, наиболее удаленных от нулевой линии. Для сечений типа прямоугольника и двутавра это противоположные угловые точки сечения. Значения наибольших и наименьших напряжений в угловых точках можно определить по формулам:

Гибкость растяжение и сжатие

где величины изгибающих моментов Mz и Му надо взять по абсолютной величине.

Напомним, что во всех предыдущих решениях использовался принцип независимости действия сил, позволяющий определять внутренние усилия для недеформированного состояния стержня. Строго говоря, это возможно только при малых деформациях. В противном случае принцип независимости действия сил использовать нельзя.

Рассмотрим, например, консольный стержень в условиях сжатия с изгибом (рис. 11.27). Если стержень обладает значительной гибкостью и прогибы от поперечной нагрузки достаточно велики, то сила Р вызывает дополнительный изгиб, а изгибающий момент в заделке от ее действия равен М = PvB. Для негибких стержней этот момент незначителен и его можно не учитывать. Для гибких стержней необходимо проводить расчет по так называемой деформированной схеме с учетом влияния продольных сил на изгиб. Подобные задачи будут рассмотрены в гл. 13.

Пример 11.7. Для короткого консольного деревянного стержня круглого сечения, находящегося в условиях центрального сжатия и изгиба в плоскости Oxz (рис. 11.28), построим эпюру о в опасном сечении.

Гибкость растяжение и сжатие

Рис. 11.28

Определяем геометрические характеристики сечения:

Гибкость растяжение и сжатие

Строим эпюры внутренних усилий N и Му (рис. 11.28, а). Изгибающий момент Му вызывает растяжение волокон левой половины стержня и имеет наибольшее значение в заделке: Му = — 4 • 1,2 • 0,6 = —2,88 кНм. Изгибающий момент Mz равен нулю. Определяем значения наибольших нормальных напряжений в точках А и В в сечении вблизи заделки:

Гибкость растяжение и сжатие

Напряжения во всех точках сечения стержня являются сжимающими. Эпюры о в опасном сечении от действия N и М и суммарная эпюра с приведены на рис. 11.28, б.

Пример 11.8. Для стального стержня, состоящего из двух неравнобоких уголков L 160x100x10, находящегося в условиях центрального растяжения и изгиба в плоскости Оху (рис. 11.29, а), определим расчетное значение силы Р из условия прочности и построим эпюру о в опасном сечении. Совместная работа уголков обеспечена соединениями, показанными пунктиром. В расчетах примем R= 210 МПа = 21 кН/см2, ус = 0,9.

Гибкость растяжение и сжатие

Рис. 11.29

Определяем геометрические характеристики сечения:

Гибкость растяжение и сжатие

Строим эпюры N w Mz (рис. 11.29, а). Опасным является сечение в середине стержня, где Mz имеет наибольшее значение. В нижних волокнах стержня нормальные напряжения от действия N и Mz имеют одинаковый знак и являются растягивающими. Из условия прочности по наибольшим растягивающим напряжениям в точке А

Гибкость растяжение и сжатие

находим Р 29,4 кН. При действии силы Р = 29,4 кН напряжения в точках А и В равны:

Гибкость растяжение и сжатие

Эпюры о в опасном сечении от действия N w Mzw суммарная эпюра а приведены на рис. 11.29, б.

Пример 11.9. Для стального консольного стержня составного сечения, находящегося в условиях внецентренного растяжения и изгиба (рис. 11.30, а), выполним проверку прочности и построим эпюру а в опасном сечении. В расчетах примем /? = 210 МПа, ус — 0,9.

Построим эпюры N, Mz, Му. Изгибающий момент Mz вызывает растяжение верхних волокон стержня и в заделке равен Mz = —10 • 3,6 — 15 • 1,8 = —63 кНм, а момент М вызывает растяжение волокон левой части сечения (при взгляде от положительного направления оси Ох) и имеет постоянное значение Му = —300 • 0,0625 = —18,75 кНм. Продольная сила является растягивающей и также имеет постоянное значение N = 300 кН.

Наибольшие нормальные напряжения действуют в сечении вблизи заделки (опасное сечение).

Гибкость растяжение и сжатие

Рис. 11.30

Определяем геометрические характеристики сечения. Учитывая, что для двутавра 124 Fx = 34,8 см2, J = 3460 см4, Jy = = 198 см4, b = 11,5 см, И = 24 см, находим:

Гибкость растяжение и сжатие

Наибольшие напряжения действуют в противоположных угловых точках опасного сечения. Определяем по формулам (11.17) отрезки, отсекаемые нулевой линией на осях координат. Учитывая, что в первой четверти сечения моменты Mz и Му вызывают сжатие и имеют отрицательный знак, находим:

Гибкость растяжение и сжатие

Отложив у0 и Zq на осях координат, проводим нулевую линию. На прямой, перпендикулярной нулевой линии, строим эпюру о (рис. 11.30, б), которая является разнозначной. Наибольшие растягивающие напряжения возникают в точке Л . Напряжения в точках Л и В равны:

Читайте также:  Пружина растяжения в волгограде

Гибкость растяжение и сжатие

Поскольку оА = 123,7 МПа ycR = 189 МПа, прочность стержня обеспечена. Эпюра с в опасном сечении приведена на рис. 11.30, б.

Источник

12 мая 2016 г.

Центрально-растянутые элементы. Работа таких элементов под нагрузкой полностью соответствует диаграмме работы матери­ала при растяжении.

Основная проверка для центрально-растянутых элементов — проверка прочности, относящаяся к первой группе предельных состояний.

Напряжения в центрально-растянутом элементе

σ=N / Aп ≤ Ryγc

где N— усилие в элементе от расчетных нагрузок; Aп — площадь поперечного сечения проверяемого элемента за вычетом ослабле­ний (площадь сечения нетто); Ry — расчетное сопротивление; γc — коэффициент условий работы.

Расчет по формуле выше предупреждает развитие пластических деформаций в ослабленном сечении элементов, выполненных из малоуглеродистых сталей и сталей повышенной прочности.

Расчет на прочность растянутых элементов конструкций из стали с отношением Ruγu > Ry эксплуатация которых возможна и после достижения металлом предела текучести, выполняют по формуле σ=N / Aп ≤ Ruγu / γuγn

где γu — коэффициент надежности при расчете по временному со­противлению.

Кроме прочности растянутых элементов, необходимо обеспечить их достаточную жесткость, чтобы избежать повреждения элементов при перевозке и монтаже конструкций, а также в процессе их эксплу­атации уменьшить провисание элементов от собственного веса и пре­дотвратить вибрацию стержней при динамических нагрузках.

Для этой цели проверяют гибкость растянутых элементов, ко­торая не должна превышать максимально допустимых значений [λ], приведенных в таблице ниже 

λ = lef/i ≤ λ 

где lef — расчетная длина элемента; i — радиус инерции сечения.

Предельные гибкости [λ] растянутых элементов

Элементы конструкций

Максимальная допускаемая гибкость

в зданиях и сооружениях при нагрузках

в затво­рах ГТС

статиче­

ских

динамиче­ских, прило­женных непо­средственно к конструкции

1

2

3

4

Пояса и опорные раскосы плоских

ферм

400

250

250

Прочие элементы ферм

400

350

350

Нижние пояса подкрановых балок

и ферм

150

Элементы продольных и попе­речных связей в затворах ГТС

150

Элементы вертикальных связей между колоннами (ниже подкра­новых балок)

300

300

Прочие элементы связей

400

400

400

Примечания. I. В сооружениях, не подвергающихся динамическим воздействиям. гибкость растянутых элементов проверяют только в вертикальной плоскости. 2. К динамическим нагрузкам, приложенным непосредственно к конструкциям, относятся нагрузки, принимаемые в расчетах на выносливость или в расчетах с учетом коэффициентов динамичности. 3. Для растянутых элементов, в которых при неблагоприятном расположении нагрузки может изменяться знак усилия, предельную гибкость принимают как для сжатых элементов; при этом соединительные прокладки в составных элементах следует устанавливать не реже чем через 40i

Центрально-сжатые элементы. Эти элементы рассчитывают по первой группе предельных состояний, при этом для коротких элементов, длина которых превышает наименьший поперечный раз­мер не более чем в 5-6 раз, проверяют прочность по формуле выше, а для длинных гибких элементов — устойчивость по формуле

σ = N/φA = Ryγc/γn

где А — площадь поперечного сечения брутто; φ — коэффициент про­дольного изгиба, определяемый по таблице ниже по наибольшей гибкости λ или по формулам в зависимости от условной гибкости элемента; при 0 < λ ≤ 2,5:

Коэффициенты φ продольного изгиба центрально-сжатых стальных элементов

Гибкость элемента

Значения φ при Ry, МПа

200

240

280

320

360

400

10

0,988

0,987

0,985

0,984

0,983

0,982

20

0,967

0,962

0,959

0,955

0,952

0,949

30

0,939

0,931

0,924

0,917

0,911

0,905

40

0.906

0,894

0,883

0,873

0,863

0,854

50

0,869

0,852

0,836

0,822

0,809

0,796

60

0,827

0,805

0,785

0,766

0,749

0,721

70

0,782

0,754

0,724

0,687

0,654

0,623

80

0,734

0,686

0,641

0,602

0,566

0,532

90

0,665

0,612

0,565

0,522

0,483

0,447

100

0,599

0,542

0,493

0,448

0,408

0,369

110

0,537

0,478

0,427

0,381

0,338

0,306

120

0,479

0,419

0,366

0,321

0,287

0,260

130

0,425

0,364

0,313

0,276

0,247

0,223

140

0,376

0,315

0,272

0,240

0,215

0,195

150

0,328

0,276

0,239

0,211

0,189

0,171

160

0,290

0,244

0,212

0,187

0,167

0,152

170

0,259

0,218

0,189

0,167

0,150

0,136

180

0,233

0,196

0,170

0,150

0,135

0,123

190

0,210

0,177

0,154

0,136

0,122

0,111

200

0,191

0,161

0,140

0,124

0,111

0,101

210

0,174

0,147

0,128

0,113

0,102

0,093

220

0,160

0,135

0,118

0,104

0,094

0,086

Коэффициенты μ для определения расчетных длин колонн и стоек постоянного сечения

 Расчетная схема элемента

 μ

Расчетная схема элемента 

 μ

 1 - 0051

1

2

0,7 

1 - 0051 - копия 

0,5

1,12

0,725

Учитывая традиционное соотношение размеров элементов в металлических конструкциях, основной является проверка устойчивости.

По формуле, выведенной Эйлером, потеря устойчивости цент­рально-сжатым элементом, шарнирно закрепленным по концам (основной случай), происходит при критической силе

Читайте также:  Растяжение и разрыв связок виды

Ncr = π2EImin / l2ef

где Е — модуль упругости; Imin — минимальный момент инерции поперечного сечения элемента; lef — расчетная длина стержня.

Соответственно критические напряжения

1 - 0052

где imin= √Imin/A — минимальный радиус инерции.

Формула Эйлера выведена в предположении, что Е — величина постоянная, т. е. критические напряжения не превосходят предел пропорциональности материала. Для малоуглеродистых сталей, име­ющих предел пропорциональности σel = 200 МПа, из формулы ниже можно получить наименьшую гибкость, при которой применима формула Эйлера:

1 - 0052 - копия

Гибкость стержней не должна превышать предельных значений для сжатых элементов (таблица ниже).

Значения предельной допустимой гибкости [λ] для сжатых стержней

позиции

Элементы конструкций

λ

1

2

3

1

Пояса, опорные раскосы и стойки, передающие опорные реакции:

а) плоских ферм и пространственных конструк­ций из труб или парных уголков высотой до 50 м;

б) пространственных конструкций из одиноч­ных уголков труб или парных уголков высотой более 50 м

180-60α

120

2

а) плоских ферм, сварных пространственных конструкций из одиночных уголков, простран­ственных конструкций из труб или парных уголков;

б) пространственных конструкций из одиночных уголков с болтовыми соединениями

210-60α

220-40α

3

Верхние пояса ферм, остающиеся незакреплен­ными в процессе монтажа

220

4

Основные колонны

180-60α

5

Второстепенные колонны (стойки фахверка, фонарей и т. п.), элементы решетки колонн, эле­менты вертикальных связей между колоннами (ниже подкрановых балок)

210-60α

6

Элементы связей (за исключением связей, ука­занных в п. 5), а также стержни, служащие для уменьшения расчетной длины сжатых стерж­ней, и другие ненагруженные элементы

200

7

Сжатые и ненагруженные элементы простран­ственных конструкций таврового и крестового сечения, подверженные воздействию ветровых нагрузок, при проверке гибкости в вертикаль­ной плоскости; элементы связей в затворах ГТС

150

Примечание. α = N / φARyγc ≥ 0,5; в необходимых случаях вместо φ следует применять φе.

Проверка устойчивости центрально-сжатого элемента сводит­ся к сравнению напряжений, равномерно распределенных по сече­нию, с критическим вычисленным с учетом случайных эксцентри­ситетов: σ=N/A ≤ σсr. Чтобы не вычислять каждый раз σсr для про­верки устойчивости можно пользоваться формулой выше. Смысл коэффициента продольного изгиба φ состоит в том, что он умень­шает расчетное сопротивление до значений, обеспечивающих ус­тойчивое равновесие стержня, т. е. до критического напряжения:

σсr = φ Ry или φ = σсrRy

С учетом влияния случайных эксцентриситетов

1 - 0053

где σсr — критическое напряжение стержня, вычисленное по форму­ле Эйлера; σeсr — критическое напряжение стержня, сжимаемого силой, приложенной с возможным случайным эксцентриситетом е.

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Читайте также:  Тренировка для растяжения мышц

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Гибкость растяжение и сжатие

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник