Формула удлинения стержня при растяжении сжатии

Формула удлинения стержня при растяжении сжатии thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Читайте также:  Синева ноги при растяжении

Формула удлинения стержня при растяжении сжатии

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Размеры растянутого стержня меняются в зависимости от величины приложенных сил. Если до нагружения стержня его длина была равна то после нагружения она станет равной (рис. 1.6). Величину называют абсолютным удлинением стержня.

Рис. 1.8

Будем считать, что абсолютное удлинение и деформации связаны только с напряжениями, возникающими в стержне. В действительности имеются и другие факторы, влияющие на деформации. Так, деформации зависят от температуры и времени действия нагрузки. Неупругие деформации зависят от “истории” нагружения, т.е. от порядка возрастания и убывания внешних сил. Пока, однако, этих вопросов мы касаться не будем.

Если стержень нагружен только силой Р, то напряженное состояние является однородным и все участки растянутого стержня находятся в одинаковых условиях; деформация по оси стержня остается одной и той же, равной своему среднему значению по длине

Эта величина называется относительным удлинением стержня.

Если стержень нагружен сосредоточенной силой Р и распределенными силами (наиболее общий случай), то относительное удлинение не будет постоянным по длине стержня. Получим выражение для относительного удлинения стержня, рассматривая элемент стержня между плоскостями и

Читайте также:  Лечение после растяжения связок голеностопа

до и после нагружения (см. рис. 1.6). Если обозначить перемещение плоскости АА элемента стержня через и, то плоскость будет иметь перемещение, равное и где — дополнительное перемещение из-за растяжения элемента стержня. Тогда относительное удлинение элемента будет равно

Заметим, что вследствие равномерного распределения напряжений по сечению удлинения для всех элементарных отрезков (см. рис. 1.6), взятых на участке оказываются одинаковыми. Следовательно, если концы отрезков до нагружения образуют плоскость, то и после нагружения стержня они образуют плоскость, но смещенную вдоль оси стержня. Это положение может быть взято в основу толкования механизма растяжения и сжатия и трактуется как гипотеза плоских сечений (гипотеза Бернулли). Если эту гипотезу принять как основную, то тогда из нее, уже как следствие, вытекает высказанное ранее предположение о равномерности распределения напряжений в поперечном сечении.

В пределах малых удлинений для подавляющего большинства материалов справедлив закон Гука, который устанавливает прямую пропорциональность между напряжениями и деформациями:

Величина Е представляет собой коэффициент пропорциональности, называемый модулем упругости первого рода. Модуль упругости является физической константой материала и определяется экспериментально. Величина Е измеряется в тех же единицах, что и а, т.е. в мегапаскалях. Вместе с тем, поскольку модуль упругости может иметь довольно большие числовые значения, его предпочтительнее измерять не в мега-, а в гигапаскалях:

Для наиболее часто применяемых материалов модуль упругости Е имеет следующие значения,

Закон Гука представляет собой простейшую и очевидную аппроксимацию наблюдаемой в опытах зависимости удлинения от напряжения. Естественно, что точность этой аппроксимации определяется в первую очередь тем, сколь широкий диапазон изменения напряжения имеется в виду. Всегда можно подобрать достаточно малый интервал напряжений, чтобы в его пределах функцию можно было бы с заданной точностью рассматривать как линейную. И конечно, для разных материалов это выглядит по-разному. Для некоторых материалов, таких как, например, сталь, закон Гука соблюдается с высокой степенью точности в широких пределах изменения напряжений. Для отожженной меди, для чугуна этот интервал изменения напряжений существенно меньше. В тех случаях, когда закон Гука явно не соблюдается, деформацию задают в виде некоторой нелинейной функции от напряжения с таким расчетом, чтобы эта функция отвечала кривой, полученной при испытании материала.

Вернемся к выражению (1.4) и заменим в нем а на на Тогда получим

или

В результате получаем систему, состоящую из двух уравнений: первого уравнения системы (полагая ) и уравнения (1.5), которая позволяет определить напряженно-деформированное состояние прямолинейного стержня, нагруженного осевыми силами:

Из первого уравнения системы (1.6) находим осевое усилие а из второго — Получаемые выражения для и и будут содержать две произвольные постоянные, определяемые из двух краевых условий: при

Абсолютное удлинение стержня переменного сечения на длине будет равно

В том случае, когда стержень нагружен только по концам, нормальная сила не зависит от Если, кроме того, стержень имеет постоянные размеры поперечного сечения то из выражения (1.5) получаем

При решении многих практических задач возникает необходимость наряду с удлинениями, обусловленными напряжением учитывать также удлинения, связанные с температурным воздействием. В этом случае пользуются способом

наложения и деформацию с рассматривают как сумму силовой и чисто температурной деформации:

где а — коэффициент температурного расширения материала.

Для однородного стержня, нагруженного по концам и равномерно нагретого, получаем

Таким образом, силовая и температурная деформации рассматриваются как независимые. Основанием этому служит экспериментально установленный факт, что модуль упругости Е при умеренном нагреве слабо меняется с температурой, точно так же как и а практически не зависит от . Для стали это имеет место до температуры порядка . При более высоких температурах необходимо учитывать зависимость Е от

Читайте также:  При растяжении связок ноги что делать

Рассмотрим примеры определения напряжений и перемещений в некоторых простейших случаях растяжения и сжатия.

Пример 1.1. Требуется выявить закон изменения нормальных сил, напряжений и перемещений по длине ступенчатого стержня, нагруженного на конце силой Р (рис. 1.7, а), определить числовые значения наибольшего напряжения и наибольшего перемещения, если Материал — сталь, Поскольку сила Р велкка, собственный вес стержня можно не учитывать.

Рис. 1.7

Из условий равновесия любой отсеченной части стержня вытекает, что нормальная сила в каждом сечении стержня равна внешней силе Р. Построим график изменения силы вдоль оси стержня. Графики подобного рода называются в сопротивлении материалов эпюрами. Они дают наглядное представление о законах изменения различных исследуемых величин. В данном случае эпюра нормальной силы представлена на рис. 1.7, б прямоугольником, поскольку На рисунке эпюра заштрихована линиями, которые проведены параллельно откладываемым на графике значениям . В данном случае значение силы откладывают вверх, поэтому штриховка проведена вертикально.

Для того чтобы получить эпюру напряжений а, надо ординаты эпюры изменить обратно пропорционально величине (рис. 1.7, в). Большее значение а равно

Определим перемещение и каждого сечения стержня по направлению силы Р. Перемещение сечения равно удлинению отрезка длиной . Следовательно, согласно формуле (1.6), . Таким образом, на участке изменения от нуля до I перемещение и пропорционально z (рис. 1.7, а). На втором участке стержня перемещение Зависимость и от также будет линейной. Наибольшее перемещение имеет торцевое сечение стержня: мм.

Пример 1.2. Построить эпюры нормальных сил, напряжений и перемещений для свободно подвешенного цилиндрического стержня, нагруженного силами собственного веса (рис. 1.8, о). Длина стержня площадь поперечного сечения плотность материала у.

Рис. 1.8

Нормальная сила в сечении z равна весу нижележащей части стержня: Следовательно, нормальная сила пропорциональна г. Эпюру в данном случае штрихуют горизонтальными линиями, поскольку

значения откладывают в горизонтальном налравденхн (рис. 1.8, в). Наг пряжение в сечении равно (см. рис. 1.8, в).

Перемещение и в сечении z равно удлинению верхнего участка стержня. Согласно формуле (1.5),

Таким образом, закон изменения и изображается квадратичной функцией 2. Наибольшее перемещение «шах имеет нижнее торцевое сечение (рис. 1.8, г):

Пример 1.3. Колонна (рис. 1.9, а) нагружена силой Р и силами собственного веса. Требуется подобрать такой закон изменения площади поперечного сечения чтобы напряжения во всех сечениях были одинаковы и равны Построить эпюры нормальных сил, напряжений и перемещений.

Рис. 1.9

На расстоянии от торца нормальная сжимающая сила равна

По условию задачи

откуда

Дифференцируя обе части этого равенства по z, получим или После интегрирования находим

При следовательно, и тогда искомый закон изменения площади принимает вид

Построение эпюр удобнее всего начинать с эпюры напряжения которое вдоль оси колонны по условию не меняется (рис. 1.9, б). Поскольку напряжение постоянно, то постоянным будет и относительное удлинение е. Поэтому перемещение и возрастает пропорционально расстоянию от основания колонны (рис 1.9, в).

Нормальная сила в сечении z равна Эпюра показана на рис. 1.9, г.

Рассмотренная задача относится к числу часто встречающихся в сопротивлении материалов задач на отыскание условий равнопрочности. Если напряжение в некотором теле (в данном случае в колонне) будет постоянно для всех точек объема, такую конструкцию называют равнопрочной. В подобных конструкциях материал используется наиболее эффективно.

Пример 1.4. Кронштейн нагружен на конце силой Р (рис. 1.10, а). Требуете подобрать поперечное сечение стержней АВ и с таким расчетом, чтобы возникающие в них напряжения имели одинаковую заданную величину а. При этом угол а должен быть выбран из условия минимального веса конструкции при заданном вылете кронштейна

Из условий равновесия узла В (рис. 1.10, б) находим нормальные силы в стержнях: .

Далее определяем площади поперечного сечения стержней по величине заданного напряжения и:

Рис. 1.10

Вес конструкции кронштейна пропорционален объему: Подставляя длины и площади стержней, находим

Величина V имеет минимум при .

Источник