Формула растяжения пружины 7 класс

Формула растяжения пружины 7 класс thumbnail

Теория

1. Деформация тел. Сила упругости. Закон Гука

Задания

1. Определение вида деформации

Сложность:
лёгкое

1

2. Применение закона Гука

Сложность:
лёгкое

1

3. Определение силы упругости

Сложность:
лёгкое

1

4. Удлинение пружины

Сложность:
среднее

2

5. Сила давления вагона

Сложность:
среднее

2

6. Найди растяжение пружины

Сложность:
среднее

2

7. Сила упругости по графику

Сложность:
сложное

4

8. Определи жёсткость пружины

Сложность:
сложное

3

9. Длина пружины динамометра без нагрузки

Сложность:
сложное

3

Тесты

1. Тренировка по теме «Деформация. Сила упругости»

Сложность: лёгкое

3

Методические материалы

1. Технологическая карта

Источник

Можно не знать закон Ома и сидеть дома. Но если не знаешь закон Гука – лучше тоже не выходить. Особенно, если идешь на экзамен по физике.

Здесь устраняем пробелы в знаниях и разбираемся, как решать задачи на силу упругости и применение закона Гука. А за полезной рассылкой для студентов добро пожаловать на наш телеграм-канал.

Сила упругости и закон Гука: определения

Сила упругости – сила, препятствующая деформациям и стремящаяся восстановить первоначальные форму и размеры тела.

Примеры действия силы упругости:

  • пружины сжимаются и разжимаются в матрасе;
  • мокрое белье колышется на натянутой веревке;
  • лучник натягивает тетиву, чтобы выпустить стрелу.

Простейшие деформации – деформации растяжения и сжатия.

Закон Гука:

Деформация, возникающая в упругом теле под действием внешней силы, пропорциональна величине этой силы.

Формула растяжения пружины 7 класс

Коэффициент k – жесткость материала. 

Есть и другая формулировка закона Гука. Введем понятие относительной деформации «эпсилон» и напряжения материала «сигма»:

Формула растяжения пружины 7 класс
 
S – площадь поперечного сечения деформируемого тела. Тогда закон Гука запишется так: относительная деформация пропорциональна напряжению.

Формула растяжения пружины 7 класс

Здесь Е – модуль Юнга, зависящий от свойств материала.

Закон Гука был экспериментально открыт в 1660 году англичанином Робертом Гуком.

Вопросы на силу упругости и закон Гука

Вопрос 1.  Какие бывают деформации?

Ответ. Помимо простейших деформаций растяжения и сжатия, бывают сложные деформации кручения и изгиба. Также разделяют обратимые и необратимые деформации.

Вопрос 2. В каких случаях закон Гука справедлив для упругих стержней?

Ответ. Для упругих стержней (в отличие от эластичных тел) закон Гука можно применять при малых деформациях, когда величина эпсилон не превышает 1%. При больших деформациях возникают явления текучести и необратимого разрушения материала.

Вопрос 3. Как направлена сила упругости?

Ответ. Сила упругости направлена в сторону, противоположную направлению перемещения частиц тела при деформации.

Вопрос 4. Какую природу имеет сила упругости?

Ответ. Сила упругости, как и сила трения – электромагнитная сила. Она возникает вследствие взаимодействия между частицами деформируемого тела.

Вопрос 5. От чего зависит коэффициент жесткости k? Модуль Юнга E?

Ответ. Коэффициент жесткости зависит от материала тела, а также его формы и размеров. Модуль Юнга зависит только от свойств материала тела.

Задачи на силу упругости и закон Гука с решениями

Кстати! Для наших читателей действует скидка 10% на любой вид работы.

Задача №1. Расчет силы упругости

Условие

Один конец проволоки жестко закреплен. С какой силой нужно тянуть за второй конец, чтобы растянуть проволоку на 5 мм? Жесткость проволоки известна и равна 2*10^6 Н/м2.

Решение

Запишем закон Гука:

Формула растяжения пружины 7 класс

По третьему закону Ньютона:

Формула растяжения пружины 7 класс

Ответ: 10 кН.

Задача №2. Нахождение жесткости пружины

Условие

Пружину, жесткость которой 100 Н/м, разрезали на две части. Чему равна жесткость каждой пружины?

Решение

Формула растяжения пружины 7 класс

По определению, жесткость обратно-пропорциональна длине. При одинаковой силе F неразрезанная пружина растянется на х, а разрезанная – на x1=x/2.

Формула растяжения пружины 7 класс

Ответ: 200 Н/м

При растяжении пружины в ее витках возникают сложные деформации кручения и изгиба, однако мы не учитываем их при решении задач.

Задача №3. Нахождение ускорения тела

Условие

Тело массой 2 кг тянут по гладкой горизонтальной поверхности с помощью пружины, которая при движении растянулась на 2 см. Жесткость пружины 200 Н/м. Определить ускорение, с которым движется тело.

Решение

Формула растяжения пружины 7 класс

За силу, которая приложена к телу и заставляет его двигаться, можно принять силу упругости. По второму закону Ньютона и по закону Гука:

Формула растяжения пружины 7 класс

Ответ: 2 м/с^2.

Задача №4. Нахождение жесткости пружины по графику

Условие

На графике изображена зависимость модуля силы упругости от удлинения пружины. Найти жесткость пружины.

Решение

Формула растяжения пружины 7 класс

Вспоминаем, что жесткость равна отношению силы и удлинения. Представленная зависимость – линейная. В любой точке прямой отношение ординаты F и абсциссы х дает результат 10 Н/м.

Читайте также:  Не разгибается колено после растяжения

Ответ: k=10 Н/м.

Задача №5. Определение энергии деформации

Условие

Для сжатия пружины на х1=2 см надо приложить силу 10 Н. Определить энергию упругой деформации пружины при сжатии на х2=4 см из недеформированного состояния.

Решение

Энергия сжатой пружины равна:

Формула растяжения пружины 7 класс

Ответ: 0,4 Дж.

Нужна помощь в решении задач? Обращайтесь за ней в профессиональный студенческий сервис.

Автор

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник

Определение и формула жесткости пружины

Определение

Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости.

Чаще всего ее обозначают ${overline{F}}_{upr}$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.

Рассмотрим пружину, на которую действует растягивающая сила ($overline{F}$), которая направлена вертикально вниз (рис.1).

Формула жесткости пружины, рисунок 1

Силу $overline{F }$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости (${overline{F}}_u$), уравновешивающая силу $overline{F }$. Если деформация является небольшой и упругой, то удлинение пружины ($Delta l$) прямо пропорционально деформирующей силе:

[overline{F}=kDelta lleft(1right),]

где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.

Жесткость (как свойство) — это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости — это основная характеристика жесткости (как свойства тела).

Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:

[k=frac{Gd^4}{8d^3_pn}left(2right),]

где $G$ — модуль сдвига (величина, зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

[left[kright]=left[frac{F_{upr }}{x}right]=frac{left[F_{upr }right]}{left[xright]}=frac{Н}{м}.]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Формула жесткости соединений пружин

Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:

[frac{1}{k}=frac{1}{k_1}+frac{1}{k_2}+dots =sumlimits^N_{ i=1}{frac{1}{k_i}left(3right),}]

где $k_i$ — жесткость $i-ой$ пружины.

При последовательном соединении пружин жесткость системы определяют как:

[k=k_1+k_2+dots +sumlimits^N_{i=1}{k_i}left(4right).]

Примеры задач с решением

Пример 1

Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $frac{Н}{м}. $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.

Формула жесткости пружины, пример 1

Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:

[k=k’left(1.1right).]

При упругих деформациях выполняется закон Гука:

[F=kDelta l left(1.2right).]

Из (1.2) найдем удлинение пружины:

[Delta l=frac{F}{k}left(1.3right).]

Длина растянутой пружины равна:

[l’=l+Delta l=l+frac{F}{k}.]

Вычислим новую длину пружины:

[l’=0,01+frac{2}{10}=0,21 left(мright).]

Ответ. 1) $k’=10 frac{Н}{м}$; 2) $l’=0,21$ м

Пример 2

Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $Delta l_2$?

Формула жесткости пружины, пример 2

Решение. Если пружины соединены последовательно, то деформирующая сила ($overline{F}$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:

[F=k_1Delta l_1left(2.1right).]

Для второй пружины запишем:

[F=k_2Delta l_2left(2.2right).]

Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:

[k_1Delta l_1=k_2Delta l_2left(2.3right).]

Из равенства (2.3) получим удлинение первой пружины:

Читайте также:  Растяжение мышц передней брюшной стенки

[Delta l_1=frac{k_2Delta l_2}{k_1}.]

Ответ. $Delta l_1=frac{k_2Delta l_2}{k_1}$

Читать дальше: формула закона Архимеда.

Источник

Сил упругости возникает при деформации физического тела, то есть когда изменяются размеры и форма тела. Эта сила направлена в сторону, противоположную силе, создающей деформацию. На примере пружины выясним как сила упругости связана с величиной деформации. Рассмотрим также причины возникновения упругих сил.

Формула растяжения пружины 7 класс

Закон Гука

Пружину можно сжимать, растягивать, изгибать или скручивать. В каждом из этих случаев будут возникать силы упругости, стремящиеся вернуть форму и размеры пружины в начальное состояние. Для понимания основных закономерностей будем рассматривать только линейные сжатия и растяжения (вдоль оси х). Для вычисления сил при деформациях изгибов и скручивании требуется применение более сложного математического аппарата.

Деформации растяжения и сжатия пружины:

Рис. 1. Деформации растяжения и сжатия пружины.

Если начальная длина, ненапряженной пружины, равна L0, то для малых деформаций выполняется закон Гука, открытый экспериментально:

$ F_уп = − k * Δх $ (1),

где, в формуле силы упругости пружины:

Fуп — сила упругости пружины, Н;

k — коэффициент жесткости пружины, Н/м;

Δх —величина деформации (дельта икс), м.

Величина малых деформаций должна быть намного меньше начальной длины пружины:

$ Δх

Рис. 2. Портрет Роберта Гука.

Этот фундаментальный закон был открыт английским ученым Робертом Гуком в 1660г. Кроме этого он сделал много других замечательных изобретений и экспериментов:

  • открыл эффект образования цветов тонких пленок, которое в оптике называется явлением интерференции;
  • предложил модель волнообразного распространения света;
  • сформулировал предположение о связи теплоты с движением частиц, из которых состоит тело;
  • изобрел спиральную пружину для регулировки часов, усовершенствовал барометр, гигрометр, анемометр.

Источник силы упругости

Происхождение сил упругости связано с электромагнитным взаимодействием молекул и атомов. Когда происходит увеличение размеров пружины (растяжении), то силы взаимного притяжения “пытаются” восстановить начальные размеры. При сжатии пружины начинают работать силы отталкивания. Когда тело не деформировано, расстояние между молекулами соответствует равенству сил притяжения и отталкивания.

Динамометры

Упругие свойства пружин используются в приборах для измерения силы. Обычно динамометр состоит из двух основных частей: пружины (упругий элемент) и шкалы устройства, на которой нанесены цифровые значения силы или массы, если этот прибор предназначен для бытового применения. Измеряемое усилие прикладывается к пружине, которая деформируется и сдвигает стрелку прибора вдоль отсчетной шкалы.

Формула растяжения пружины 7 класс

Рис. 3. Пружинные динамометры.

Хотя закон Гука и считается универсальным, но диапазон деформаций в котором он выполняется сильно отличается для разных тел. Например, в металлических проволоках (прямолинейных) и стержнях максимальная величина относительной деформации (отношение Δх к L0), для которой еще будет справедлив закон Гука, составляет не более 1%. При больших деформациях наступают необратимые разрушения материалов.

Что мы узнали?

Итак, мы узнали, что сила упругости пружины прямо пропорциональна величине деформации тела и направлена в сторону, обратную направлению сдвига пружины. Силы упругости связаны с электромагнитным взаимодействием молекул и атомов. При сжатии включается механизм отталкивания электрических одноименных зарядов. При растяжении — начинает работать механизм притяжения разноименных зарядов.

Тест по теме

Оценка доклада

Средняя оценка: 4.7. Всего получено оценок: 77.

Источник

Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?

Сила упругости и закон Гука

Для начала определим основные термины, которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация — это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д. ), то деформация пластическая.

Примерами пластических деформаций являются:

  • лепка из глины;
  • погнутая алюминиевая ложка.

В свою очередь, упругими деформациями будут считаться:

  • резинка (можно растянуть ее, после чего она вернется в исходное состояние);
  • пружина (после сжатия снова распрямляется).

В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:

Читайте также:  Лангетка сколько носить при растяжении

F = — k·x;

где F — сила упругости, x — расстояние, на которое изменилась длина тела в результате растяжения, k — необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).

Определение силы упругости

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ — на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

k = F/x.

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ — Н/м.

Расчет жесткости системы

Встречаются более сложные задачи, в которых необходим расчет общей жесткости. В таких заданиях пружины соединены последовательно или параллельно.

Последовательное соединение системы пружин

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

1/k = 1/k1 + 1/k2 + … + 1/ki,

где k — общая жесткость системы, k1, k2, …, ki — отдельные жесткости каждого элемента, i — общее количество всех пружин, задействованных в системе.

Коэффициент жесткости пружин

Параллельное соединение системы пружин

В случае когда пружины соединены параллельно, величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

k = k1 + k2 + … + ki.

Измерение жесткости пружины опытным путем — в этом видео.

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, — это сила тяжести тела. Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

  1. Рассчитываем длину абсолютного удлинения: x = 14—10 = 4 см = 0,04 м.
  2. По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.

Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

  1. Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
  2. Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
  3. Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
  4. По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
  5. Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.

Ответ: во втором случае пружина растянется на 10 см.

Видео

Из этого видео вы узнаете, как определить жесткость пружины.

Источник