Диаграмма растяжения стали наклеп

Диаграмма растяжения стали наклеп thumbnail

Испытание на растяжение

Испытание на растяжение производится на образцах двух типов:
цилиндрических и плоских.

Диаграмма растяжения стали наклеп

Цилиндрические образцы могут быть нормальные (с расчетной
длиной lрасч=10d) и
укороченные (с lрасч=5d).
Для плоских образцов при вычислении расчетной длины образца используется
диаметр круга, равновеликого поперечному сечению рабочей части образца.

В процессе растяжения, реализуемого на специальных
испытательных машинах, автоматически записывается диаграмма испытания в
координатах сила – удлинение (рабочая, или индикаторная диаграмма). Для
малоуглеродистой стали эта диаграмма выглядит следующим образом:

Диаграмма растяжения стали наклеп

Рассмотрим основные участки диаграммы.

OB – участок упругости.

После нагружения в пределах этого участка образец
возвращается в исходное состояние. Такая деформация, полностью исчезающая после
разгрузки, называется упругой. Механизм упругой деформации – изменение
расстояния между атомами.

BC – участок общей текучести (площадка текучести).

На этом участке на поверхности образца появляется сетка линий,
направленных под углом приблизительно 45° к оси растяжения – линии
Чернова-Людерса. Эти линии свидетельствуют о появлении нового механизма
деформации, заключающегося в сдвиге атомных слоев друг относительно друга.
Из-за этих сдвигов после разгрузки образец не возвращается в исходное
состояние, приобретая остаточную, или пластическую, деформацию. Пластическая
деформация сопровождается нагревом образца, изменением его электропроводности и
магнитных свойств, а также акустическим излучением.

CD – участок упрочнения.

Пластическая деформация изменяет внутреннюю структуру
материала, в результате чего образец снова проявляет сопротивление
деформированию, и растягивающая сила повышается.

DK – участок местной текучести.

Точка D диаграммы соответствует появлению на образце
локального сужения – шейки. Дальнейшая деформация локализуется в этой области,
и за счет уменьшения площади поперечного сечения необходимая для растяжения
сила снижается. Точка K соответствует разделению образца на части. Разрыв
происходит в самом тонком месте шейки.

Чтобы исключить влияние геометрических размеров образца,
рабочая диаграмма перестраивается в условную (в координатах напряжение –
деформация:

Диаграмма растяжения стали наклеп

Полученная диаграмма называется условной потому, что при
вычислении напряжения и деформации сила и удлинение относятся не к
действительным, а к начальным значениям соответственно площади поперечного
сечения и длины образца.

На условной диаграмме выделяют следующие характерные точки:

sпц
– предел пропорциональности: максимальное напряжение, до которого справедлив
закон Гука (т.е. наблюдается прямая пропорциональная зависимость между
напряжением и деформацией);


– предел упругости: максимальное напряжение, до которого в материале не
возникает пластических деформаций;


– предел текучести: напряжение, при котором наблюдается рост деформации при
постоянном напряжении;


– предел прочности (или временное сопротивление разрыву): максимальное
напряжение, которое может выдержать образец без разрушения.

В момент разрыва истинное напряжение, отнесенное к
действительной площади сечения, существенно выше предела прочности.

За пределами участка упругости в любой точке диаграммы
полная деформация εполн состоит из упругой εупр
и пластической εпл составляющих:

Диаграмма растяжения стали наклеп

Если прекратить нагружение в точке G и снять нагрузку, то
разгрузка произойдет по закону Гука, т.е. по линии, параллельной участку
упругости (отрезок GO1). Таким образом, отрезок OO1
определяет величину остаточной деформации образца, а отрезок O1O2 – величину
упругой деформации на момент разрыва.

Механические характеристики материалов

Механические характеристики материалов, определяемые при
растяжении, можно разделить на три группы.

1. Характеристики упругих свойств.

Модуль упругости первого рода (модуль Юнга).

Модуль Юнга характеризует жесткость материала (физический
смысл) и равен тангенсу угла наклона участка упругости OB условной диаграммы к
оси абсцисс E = tga
(геометрический смысл). Для основных марок стали E = 2·105 МПа, для
меди E = 1,2·105 МПа, для алюминия E = 0,7·105 МПа.

Коэффициент Пуассона.

Удлинению стержня при растяжении в продольном направлении
сопутствует сжатие в поперечном направлении:

Диаграмма растяжения стали наклеп

При этом относительная линейная деформация определяется как

,

а относительная поперечная
деформация –

.

За коэффициент Пуассона принимают модуль отношения
поперечной деформации к продольной:

.

Коэффициент Пуассона изменяется от 0 (для пробки) до 0,5
(для резины). Для основных марок стали .

Иногда к характеристикам упругости относят также предел
пропорциональности sпц и
предел упругости sу.

2. Характеристики прочности:

– предел текучести sт,

– предел прочности sв.

Если диаграмма растяжения не имеет площадки текучести, то
определяют условный предел текучести s0,2
– напряжение, соответствующее величине остаточной деформации 0,2%.

Диаграмма растяжения стали наклеп

Для некоторых материалов величину условного предела
текучести определяют при остаточной деформации 0,5% (s0,5). Используется также понятие условного предела
упругости s0,001 или s0,005 – напряжение,
соответствующее величине остаточной деформации 0,001 или 0,005%.

3. Характеристики пластичности.

Относительное остаточное удлинение при разрыве:

,

где l0 – начальная
длина образца (до испытания), – конечная длина образца
(после разрушения).

Относительное остаточное удлинение при разрыве можно
определить непосредственно по диаграмме растяжения, проведя из точки разрыва
линию, параллельную участку упругости, до пересечения с осью абсцисс (отрезок
OL):

Диаграмма растяжения стали наклеп

Относительное остаточное сужение при разрыве:

,

где A0 и Aш –
площадь поперечного сечения рабочей части соответственно до и после испытания
(в месте образования шейки).

Читайте также:  Посинела нога от растяжения

Испытание на сжатие

При испытании на сжатие металлов используются цилиндрические
образцы с отношением высоты к диаметру 1…3:

Для строительных материалов используются кубические образцы
с длиной грани 100 или 150 мм.

Испытание на сжатие используется редко в силу того, что
между плитами испытательной машины и торцевыми поверхностями образца возникает
сила трения, нарушающая одноосное напряженно-деформированное состояние, в
результате чего определяемые характеристики прочности не могут использоваться в
расчетах на прочность. Для устранения силы трения используются следующие
приемы:

  • нанесение парафинового слоя на
    торцевые поверхности образца;
  • использование плиты
    специальной конструкции.

Диаграмма растяжения стали наклеп

Угол конуса рассчитывают таким, чтобы расклинивающая сила
компенсировала силу трения.

Пластичные и хрупкие материалы

По величине относительного остаточного удлинения при разрыве
принято различать:

пластичные материалы – способные получать без
разрушения большие остаточные деформации (d > 10%);

хрупкие материалы – способные разрушаться без
образования заметных остаточных деформаций (d < 5%).

При испытаниях на растяжение:

Диаграмма растяжения стали наклеп

1 –
пластичный материал;

2 –
хрупкий материал.

Пластичные и хрупкие материалы отличаются также по характеру
разрушения. Пластичные материалы перед разрывом образуют заметную шейку, а
разрушение происходит под углом примерно 45° к оси растяжения (последнее хорошо
видно на плоских образцах). Хрупкие материалы разрушаются по плоскости,
нормальной оси растяжения, практически без образования шейки.

Сравним результаты испытаний на растяжение и сжатие для
пластичных материалов:

1 –
растяжение;

2 –
сжатие.

Считается, что для пластичных материалов пределы текучести
при растяжении и сжатии равны друг другу: sтр»sтс.

Другой особенностью испытания на сжатие пластичных
материалов является то, что их не удается довести до разрушения, т.к. они
сплющиваются в тонкий диск. По этим причинам пластичные материалы на сжатие
практически не испытывают.

Для хрупких материалов диаграммы испытаний на растяжение и
сжатие подобны друг другу:

1 –
растяжение;

2 –
сжатие.

Хрупкие материалы при испытании на сжатие разрушаются, при
этом оказывается, что предел прочности при растяжении меньше, чем при сжатии: sвр<sвс.

Существует также группа материалов, которые способны при
растяжении воспринимать большие нагрузки, чем при сжатии. Это в основном
волокнистые материалы, а из металлов – магний.

Для волокнистых материалов характерна анизотропия
механических свойств. Например, при испытаниях на сжатие дерева:

1 –
дерево вдоль волокон;

2 –
дерево поперек волокон.

Наклеп. Эффект Баушингера. Гистерезис

Если нагрузить образец до точки G, а затем произвести
разгрузку, то при повторном нагружении диаграмма растяжения пойдет по пути O1GK:

Диаграмма растяжения стали наклеп

Явление повышения прочностных свойств материала (sпц, sу и sт)
и снижения пластических (d) в
результате предварительного нагружения выше предела текучести называется
наклепом (или деформационным упрочнением). Если после такого нагружения
выдержать образец в течение 100 и более часов, то при этом повышается и предел
прочности. Это явление называется естественным старением.

Наклеп может быть частично или полностью устранен
термической обработкой.

При сжатии нагружение выше предела текучести, так же, как и
при растяжении, вызывает явление наклепа. Однако наклеп, вызванный растяжением,
снижает sпц и sт при сжатии. Это явление
называется эффектом Баушингера.

Если рассмотреть диаграмму растяжения при большом разрешении
по оси деформаций, то станет заметно, что линии разгрузки GO1 и
нагрузки O1G образуют петлю – петлю гистерезиса:

Диаграмма растяжения стали наклеп

Явление гистерезиса можно определить как необратимую потерю
энергии деформации в результате несовпадения кривой нагружения с кривой
разгрузки. При свободных колебаниях гистерезис является причиной постепенного
затухания колебательного процесса.

При анализе диаграмм растяжения и сжатия явлением
гистерезиса пренебрегают.

Источник

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]

Диаграмма растяжения

Рис. 1 Диаграмма растяжения стального образца

Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.

Построение диаграммы

Рассмотрим подробнее процесс построения диаграммы.

В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).

Читайте также:  Симптомы при растяжении связок в голеностопном суставе

На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.

После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.

В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.

После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).

Рис. 2 Стальной образец с «шейкой»

Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».

В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»

Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:

W=0,8Fmax∙Δlmax

По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.

Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.

Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >

Источник

Механические характеристики материалов, то есть величины, характеризующие их прочность, пластичность, упругость, твердость, а также упругие постоянные Е и v, необходимые конструктору для выбора материалов и расчетов проектируемых деталей, определяют путем механических испытаний стандартных образцов, изготовленных из исследуемого материала.

Большая заслуга в установлении единообразных во всем мире методов испытаний материалов принадлежит русскому профессору Н.А. Белелюбскому (1845—1922) — президенту Международного общества испытания материалов.

Вопросы проведения лабораторных испытаний материалов в настоящей книге не излагаются, с ними читатель может ознакомиться в специальной литературе.

В данном параграфе мы подробно рассмотрим диаграмму, полученную в процессе наиболее распространенного и важного механического испытания, а именно испытания на растяжение низкоуглеродистой стали (например, стали СтЗ) при статическом нагружении.

В процессе этого испытания специальное устройство испытательной машины автоматически вычерчивает диаграмму, выражающую зависимость между растягивающей силой и абсолютным удлинением, то есть в координатах (F, Д/). Для изучения механических свойств материала независимо от размеров образца применяется диаграмма в координатах «напряжение — относительное удлинение» (а, в). Эти диаграммы отличаются друг от друга лишь масштабами.

На рис. 2.6 представлена диаграмма растяжения низкоуглеродистой стали. Эта диаграмма имеет следующие характерные точки.

Точка А соответствует пределу пропорциональности. Пределом пропорциональности апц называется то наибольшее напряжение, до которого деформации растут пропорционально нагрузке, то есть справедлив закон Гука (для стали СтЗ а пц * 200 МПа).

Точка А практически соответствует также и пределу упругости. Пределом упругости сУуп называется то наибольшее напряжение, до которого деформации практически остаются упругими.

Точка С соответствует пределу текучести. Пределом текучести стх называется такое напряжение, при котором в образце появляется заметное удлинение без увеличения нагрузки (для стали СтЗ оТ * 240 МПа).

Рис. 2.6

При достижении предела текучести поверхность образца становится матовой, так как на ней появляется сетка линий Людерса — Чернова, наклоненных к оси под углом 45°. Эти линии впервые были описаны в 1859 г. немецким металлургом Людерсом и независимо от него в 1884 г. русским металлургом Д.К. Черновым (1839—1921), предложившим использовать их при экспериментальном изучении напряжений в сложных деталях. Предел текучести является основной механической характеристикой при оценке прочности пластичных материалов.

Точка В соответствует временному сопротивлению или пределу прочности.

Временным сопротивлением ав называется условное напряжение, равное отношению максимальной силы, которую выдерживает образец, к первоначальной площади его поперечного сечения (для стали СтЗ ств « 400 МПа). При достижении временного сопротивления на растягиваемом образце образуется местное сужение — шейка, то есть начинается разрушение образца. В определении временного сопротивления говорится об условном напряжении, так как в сечениях шейки напряжения будут больше.

Пределом прочности стпч называется временное сопротивление образца, разрушающегося без образования шейки. Предел прочности является основной механической характеристикой при оценке прочности хрупких материалов.

Точка D соответствует напряжению, возникающему в образце в момент разрыва во всех поперечных сечениях, кроме сечений шейки.

Точка М соответствует напряжению, возникающему в наименьшем поперечном сечении шейки в момент разрыва. Это напряжение можно назвать напряжением разрыва.

С помощью диаграммы растяжения в координатах (а, е) определяем модуль упругости первого рода:

Читайте также:  Как начинать упражнения на растяжение

где р„ — масштаб напряжений; — масштаб относительных удлинений; а — угол, который составляет с осью абсцисс прямая линия диаграммы до предела пропорциональности.

Для большинства углеродистых сталей предел пропорциональности можно приблизительно считать равным половине временного сопротивления.

Деформация образца за пределом упругости состоит из упругой и остаточной, причем упругая часть деформации подчиняется закону Гука и за пределом пропорциональности. Это проявляется в том, что если нагрузку снять, то образец укоротится в соответствии с прямой TF диаграммы. При повторном нагружении того же образца его деформация будет соответствовать диаграмме FTBD. Таким образом, при повторном растяжении образца, ранее нагруженного выше предела упругости, механические свойства материала меняются, а именно — повышается прочность (предел упругости и пропорциональности) и уменьшается пластичность. Это явление называется наклёпом.

В некоторых случаях наклеп нежелателен (например, при пробивке отверстий под заклепки увеличивается возможность появления трещин возле отверстий), в других случаях наклеп создается специально (например, цепи подъемных машин, арматура железобетонных конструкций, провода, тросы подвергаются предварительной вытяжке за предел текучести). Проволока, полученная волочением, в результате наклепа имеет значительно большую прочность, чем точеный образец из того же материала.

Степень пластичности материала может быть охарактеризована (в процентах) остаточным относительным удлинением Д и остаточным относительным сужением У шейки образца после разрыва;

где /0 — первоначальная длина образца; — длина образца после разрыва; А0 — первоначальная площадь поперечного сечения образца; Аш — площадь наименьшего поперечного сечения шейки образца после разрыва.

Чем больше А и Т, тем пластичнее материал.

Материалы, обладающие очень малой пластичностью, называют хрупкими. Диаграмма растяжения хрупких материалов не имеет площадки текучести, у них при разрушении не образуется шейка.

Диаграмма сжатия стали до предела текучести совпадает с диаграммой растяжения, причем результаты испытаний сталей на растяжение и сжатие равноценны.

Результаты испытаний на растяжение и сжатие чугуна значительно отличаются друг от друга; предел прочности при растяжении в 3…5 раз ниже, чем при сжатии. Иными словами, чугун значительно хуже работает на растяжение, чем на сжатие.

Отметим, что ярко выраженную площадку текучести имеют только диаграммы растяжения низкоуглеродистой стали и некоторых сплавов цветных металлов. На рис. 2.7 показан для сравнения вид диаграмм растяжения сталей с различным содержанием углерода; из рисунка видно, что с повышением процента содержания углерода увеличивается прочность стали и уменьшается ее пластичность.

Рис. 2.7

Для пластичных материалов, диаграммы растяжения которых не имеют ярко выраженной площадки текучести (средне- и высокоуглеродистые, легированные стали) или совсем ее не имеют (медь, дюралюминий), вводится понятие условного предела текучести — напряжения, при котором относительное остаточное удлинение образца равно 0,2%. Условный предел текучести также обозначим через ах (иногда его обозначают Стод).

Следует отметить, что деление материалов на пластичные и хрупкие условно, так как в зависимости от характера действующей нагрузки хрупкий материал может получить пластические свойства, и, наоборот — пластичный материал приобретает свойства хрупкого. Так, например, деталь из пластичного материала при низкой температуре или при ударной нагрузке разрушается без образования шейки, как хрупкая.

Ползучесть. Последействие. Релаксация напряжений

Все конструкционные (то есть обладающие прочностью) материалы при длительной эксплуатации, даже при постоянных условиях нагружения, в большей или меньшей степени могут медленно, самопроизвольно и необратимо изменять свои деформации и напряжения. Это свойство материалов называется ползучестью.

Если ползучесть возникает при постоянных напряжениях, то это необратимое явление называется последействием.

Если происходит изменение напряжений при постоянной деформации, то процесс носит название релаксации напряжений, то есть их уменьшения.

Примером последействия может служить увеличение размеров лопаток газовых турбин, длительное время работающих при больших центробежных силах в условиях высоких температур. Примером релаксации напряжений может служить происходящий с течением времени процесс ослабления затяжки болтовых соединений, в особенности работающих в условиях высоких температур.

Для сталей и чугунов при температуре до 300 °С явление ползучести несущественно. Для металлов с низкой температурой плавления (свинец, алюминий), для бетона, дерева и для высокополимерных материалов (резина, каучук, пластмасса) ползучесть весьма заметна и при комнатных температурах.

Основными механическими характеристиками ползучести материалов являются установленные экспериментальным путем предел ползучести и предел длительной прочности.

Пределом ползучести апп называется наибольшее напряжение, при котором деформация происходит за промежуток времени, не превышающий предельного значения, заданного техническими условиями.

Пределом длительной прочности одп называется условное напряжение, равное отношению нагрузки, при которой происходит разрушение испытываемого образца через определенный промежуток времени, к первоначальной площади поперечного сечения образца.

Время испытаний образцов зависит от условий работы конструкций и происходит в течение десятков, сотен и тысяч часов.

Источник