Диаграмма растяжения для идеально пластичного материала

Диаграмма растяжения для идеально пластичного материала thumbnail

Рис. 1. Типичная диаграмма σ — ε для малоуглеродистой стали
1. Предел прочности (временное сопротивление разрушению)
2. Предел текучести (верхний)
3. Точка разрушения
4. Область деформационного упрочнения
5. Образование шейки на образце

Рис. 2. Типичная диаграмма σ — ε для алюминиевых сплавов
1. Предел прочности (временное сопротивление разрушению)
2. Условный предел текучести (σ0.2)
3. Предел пропорциональности
4. Точка разрушения
5. Деформация при условном пределе текучести (обычно, 0,2 %)

Микроструктура заэвтектоидной стали (1,7 % углерода)

Обычно диаграмма растяжения является зависимостью приложенной нагрузки P от абсолютного удлинения Δl. Современные машины для механических испытаний позволяют записывать диаграмму в величинах напряжения σ (σ = P/A0, где A0 — исходная площадь поперечного сечения) и линейной деформации ε (ε = Δl/l0 ). Такая диаграмма носит название диаграммы условных напряжений, так как при этом не учитывается изменение площади поперечного сечения образца в процессе испытания.

Начальный участок является линейным (т. н. участок упругой деформации). На нём действует закон Гука:

Затем начинается область пластической деформации. Эта деформация остаётся и после снятия приложенной нагрузки. Переход в пластическую область обнаруживается не только по проявлению остаточных деформаций, но и по уменьшению наклона кривой с увеличением степени деформации. Данный участок диаграммы обычно называют площадкой (зоной) общей текучести, так как пластические деформации образуются по всей рабочей длине образца. С целью изучения и точного анализа диаграммы деформации, современные испытательные машины оснащены компьютеризированной записью результатов.

По наклону начального участка диаграммы рассчитывается модуль Юнга. Для малоуглеродистой стали наблюдается т. н. «зуб текучести» и затем площадка предела текучести. Явление «зуба» текучести связано с дислокационным механизмом деформации. На начальном участке плотность дислокаций является недостаточной для обеспечения более высокой степени деформации. После достижения точки верхнего предела текучести начинается интенсивное образование новых дислокаций, что приводит к падению напряжения. Дальнейшая деформация при пределе текучести происходит без роста напряжения . Зависимость предела текучести, от размера зерна, d, выражена соотношением Холла-Петча:

После достижения конца площадки текучести (деформация порядка 2 — 2,5 %) начинается деформационное упрочнение (участок упрочнения), видимое на диаграмме, как рост напряжения с ростом деформации. В этой области до достижения максимальной нагрузки (напряжения (σВ) макродеформация остаётся равномерной по длине испытуемого образца. После достижения точки предела прочности начинает образовываться т. н. «шейка» — область сосредоточенной деформации. Расположение «шейки» зависит от однородности геометрических размеров образца и качества его поверхности. Как правило, «шейка» и, в конечном счёте, место разрушения расположено в наиболее слабом сечении. Кроме того, важное значение имеет одноосность напряжённого состояния (отсутствие перекосов образца в испытательной машине). Для пластичных материалов при испытании на статическое растяжение одноосное напряжённое состояние сохраняется лишь до образования т. н. «шейки» (до достижения максимальной нагрузки и начала сосредоточенной деформации).

Вид диаграммы деформации, приведённый на рис. 1 является типичным для О.Ц.К. материалов с низкой исходной плотностью дислокаций.

Для многих материалов, например, с Г. Ц. К. кристаллической решёткой, а также для материалов с высокой исходной плотностью дефектов, диаграмма имеет вид, показанный на рис. 2. Основное отличие — отсутствие явно выраженного предела текучести. В качестве предела текучести выбирается значение напряжения при остаточной деформации 0,2 % (σ0.2).

После достижения максимума нагрузки происходит падение нагрузки (и, соответственно, напряжения σ) за счёт локального уменьшения площади поперечного сечения образца. Соответствующий (последний) участок диаграммы называют зоной местной текучести, так как пластические деформации продолжают интенсивно развиваться только в области шейки.

Иногда используется диаграмма истинных напряжений, S — e (истинное напряжение S = P/A, где A — текущая площадь поперечного сечения образца; истинная деформация e = Δl/l, где l — текущая длина образца). В этом случае, после достижения максимальной нагрузки не происходит падения напряжения, истинное напряжение растёт за счёт локального уменьшения сечения в «шейке» образца. Поэтому различие между диаграммами истинных и условных напряжений наблюдается только после предела прочности — до точки 1 они практически совпадают друг с другом.

Образцы из пластичного материала разрушаются по поперечному сечению с уменьшением диаметра в месте разрыва из-за образования «шейки».

Источник

На рис. 6. представлена диаграмма растяжения для малоуглеродистой стали.

Рис. 6. Диаграмма растяжения малоуглеродистой стали

Зона упругости (начальный участок ОА): линейная зависимость между и , выполняется закон Гука . Значение численно равно тангенсу угла наклона линейного участка ОА к оси : . Если в точке К, находящейся на участке ОА, прекратить нагружение образца и начать его разгрузку, то процесс разгрузки пойдет по линии КО. После выполнения этого процесса деформация полностью исчезнет, и восстановятся первоначальные размеры образца.

Читайте также:  Что делать если растяжение бедра

Упругая деформация – деформация, полностью исчезающая после снятия внешней нагрузки.

предел пропорциональности – наибольшее напряжение, до которого материал следует закону Гука. Эта величина определяется степенью отклонения кривой от прямой , т. е. тангенсом угла ( ), который составляет касательная к диаграмме с осью .

предел упругости – наибольшее напряжение, до которого материал не получает остаточных (пластических) деформаций (см. рис. 6). Обычно остаточную деформацию, соответствующую пределу упругости, принимают в пределах , т. е. 0,001…0,005 %.

Зона общей текучести (площадка текучести) – участок АВ: возрастание удлинения образца практически без увеличения нагрузки (см. рис. 6).

Если в точке К, находящейся на участке АВ, прекратить нагружение образца и начать процесс разгрузки, то линия разгрузки имеет вид отрезка KL, параллельного начальному участку ОА (рис. 7). После разгрузки образца (в точке L) относительная деформация полностью не исчезает. Она уменьшается на величину упругой части деформации. Отрезок OL характеризует величину остаточной (пластической) деформации , а отрезок LM – величину упругой деформации , полностью исчезающей после разгрузки образца. Точка М получена опусканием перпендикуляра из точки К на ось .

Рис. 7. Нагружение до точки К, находящейся на площадке текучести АВ, и последующая разгрузка до точки L

Остаточная (пластическая) деформация – деформация, не исчезающая после снятия внешней нагрузки.

Таким образом, полная относительная продольная деформация образца складывается из двух частей:

где – упругая деформация, – остаточная (пластическая) деформация.

предел текучести – напряжение, при котором происходит рост деформации без заметного увеличения нагрузки.

Наличие площадки текучести для многих металлов не является характерным. В качестве примера на рис. 8 показан общий вид диаграмм растяжения высококачественной легированной стали (кривая 2) и алюминия (кривая 1).

Рис. 8. Примеры диаграмм растяжения без площадки текучести:

1 – алюминий; 2 – высококачественная легированная сталь

Если на диаграмме отсутствует явно выраженная площадка текучести, то определяют условный предел текучести – напряжение, при котором остаточная (пластическая) деформация , т. е. 0,2 % (рис. 9).

Рис. 9. Определение условного предела текучести

Зона упрочнения – участок ВС: удлинение образца сопровождается возрастанием нагрузки, но значительно более медленным, чем на упругом участке (см. рис. 6). Зависимость нелинейная.

Образование пластических деформаций связано со сдвигами в кристаллической решетке. Наглядное подтверждение этому дает наблюдение за поверхностью образца. В зонах общей текучести (если на диаграмме имеется площадка текучести) или упрочнения (если отсутствует площадка текучести), т. е. при возникновении заметных пластических деформаций, полированная поверхность образца становится матовой, поскольку покрывается системой тонких линий – полос скольжения (линий Чернова – Людерса) (рис. 10, а). Они имеют преимущественное направление под углом 450 к оси стержня и практически совпадают с плоскостями наибольших касательных напряжений.

Рис. 10. Возникновение пластических деформаций:

а – линии Чернова – Людерса; б – механизм удлинения

В пределах одного кристалла образование пластических деформаций происходит в результате смещения (сдвига) части кристалла по некоторой плоскости на целое число элементов кристаллической решетки.

Механизм удлинения показан на рис. 10, б упрощенно. Действительная картина более сложна, т. к. носит пространственный характер, и сдвиг происходит не только в одном семействе параллельных плоскостей, как это показано на рис. 10, б , а во всех семействах плоскостей, составляющих с осью стержня угол, близкий к .

Если в точке К, находящейся на участке ВС, прекратить нагружение образца и начать процесс разгрузки, то линия разгрузки имеет вид отрезка KL || ОА (рис. 11). После разгрузки образца (в точке L) относительная деформация полностью не исчезает. Она уменьшается на величину упругой части деформации. Отрезок OL характеризует величину остаточной (пластической) деформации , а отрезок LM – величину упругой деформации , полностью исчезающей после разгрузки образца. Точка М получена опусканием перпендикуляра из точки К на ось .

Рис. 11. Нагружение до точки К, находящейся в зоне упрочнения ВС, и последующая разгрузка до точки L

Предел прочности (временнóе сопротивление) – отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения. Точка С диаграммы соответствует (см. рис. 6).

При достижении в центре растягиваемого образца образуется шейка – местное уменьшение диаметра образца, т. е. намечается место будущего разрыва (рис. 12).

Рис. 12. Образование шейки на растягиваемом образце

Дальнейшее удлинение образца происходит только в зоне шейки, т. е. носит местный характер. Поэтому участок CD диаграммы называют зоной местной текучести. Точка D соответствует разрушению (разрыву) образца, – напряжение при разрушении (см. рис. 6).

Дата добавления: 2016-09-03; просмотров: 1622 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Читайте также:  Расчет на прочность при растяжении три вида

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]

Диаграмма растяжения

Рис. 1 Диаграмма растяжения стального образца

Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.

Построение диаграммы

Рассмотрим подробнее процесс построения диаграммы.

В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).

На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.

После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.

В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.

После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).

Стальной образец с образовавшейся "шейкой"

Рис. 2 Стальной образец с «шейкой»

Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».

В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»

Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:

W=0,8Fmax∙Δlmax

По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.

Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.

Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >

Источник

Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой, направленной по продольной оси; при этом в средней части образца реализуется однородное напряженное состояние.

Форма, размеры образца и методика проведения испытаний определяются соответствующими стандартами, например, ГОСТ 34643—81, ГОСТ 1497-73. По результатам испытаний строится зависимость σ=f (ε) между напряжениями σ=F/A и деформациями ε=Δl/l , которая называется диаграммой деформирования.

Опыты на растяжение образцов выявляют некоторые общие свойства конструкционных материалов—свойства упругости и пластичности. Рассмотрим типичные кривые деформирования при растяжении образцов из материала сталь 30 и сталь 40Х.

Характерные диаграммы растяжения

Характерные диаграммы растяжения

Если напряжения не превышают  предела пропорциональности (первая точка на диаграмме), и зависимость между напряжениями и деформациями линейна, то она описывается законом Гука σ=εЕ , где Е — модуль продольной упругости материала. Размерность модуля упругости — Н/м2 (Паскаль). Значение модуля упругости Е на кривой деформирования численно равно тангенсу угла наклона линейного участкаЕ = tgβ. Таким образом, величину Е можно рассматривать как характеристику упругого сопротивления или как характеристику интенсивности нарастания напряжения с увеличением деформации.

Физический смысл коэффициента Е определяется как напряжение, необходимое для увеличения длины образца в два раза. Такое толкование довольно искусственно, поскольку величина упругого удлинения у большинства твердых тел редко достигает даже 1%.

Напряжения, являющиеся верхней границей проявления чисто упругих деформаций, соответствуют точке 2 диаграммы и называются пределом упругости σупр .

Точка 3 диаграммы характерна тем, что при достижении напряжениями величины σ = σт ( σт — предел текучести), дальнейшее удлинение образца (для малоуглеродистых сталей) происходит практически без увеличения нагрузки. Это явление носит название текучести, а участок диаграммы, расположенный непосредственно правее точки 3, называется площадкой текучести. При этом полированная поверхность образца мутнеет, докрывается ортогональной сеткой линий (линии Чернова—Людерса), расположенных под углом 45o к продольной оси образца—по направлению плоскостей действия максимальных касательных напряжений.

Читайте также:  Растяжение двуглавой мышцы бедра лечение

У многих конструкционных материалов площадка текучести не выражена столь явно, как у малоуглеродистых сталей. Для таких материалов вводится понятие условного предела текучести σs; это напряжение, которому соответствует остаточная (пластическая) деформация, равная s %. Обычно принимается s = 0,2%. Поэтому условный предел текучести часто обозначается как σ0,2.

После площадки текучести для дальнейшего увеличения деформации необходимо увеличение растягивающей силы. Материал снова проявляет способность сопротивляться деформации; участок за площадкой текучести (до точки 4) называется участком упрочнения. Точка 4 соответствует максимальной нагрузке, выдерживаемой образцом. Соответствующее напряжение называется временным сопротивлением σв (или пределом прочности σпч ).

Дальнейшая деформация образца происходит без увеличения или даже с уменьшением нагрузки вплоть до разрушения (точка 5). Точке 4 на диаграмме соответствует начало локального уменьшения размеров поперечного сечения образца, где, в основном, сосредоточивается вся последующая пластическая деформация.

Диаграмма, приведенная на рисунке выше, является диаграммой условных напряжений, условность состоит в том, что все силы относились к первоначальной площади поперечного сечения образца; в действительности же при растяжении площадь поперечного сечения образца уменьшается. Если учитывать текущее значение площади поперечного сечения при определении напряжений, то получим диаграмму истинных напряжений.

Диаграмма истинных напряжений

Диаграмма истинных напряжений

Если в некоторый момент нагружения (точка А на рисунке «Характерные диаграммы растяжения») прекратить нагружение и снять нагрузку, то разгрузка образца пойдет по линии АВ, параллельной линейному участку диаграммы 0—1. При этом полная деформация в точке А равна:

ε =ε(е) + ε(р)  

где ε(е) = σ/Е —  упругая деформация, ε(р)пластическая (остаточная деформация). Уравнение это справедливо для любой точки диаграммы.

Эффект Баушингера. После того как материал испытал воздействие осевого усилия одного знака (например, растяжение) в области пластических деформаций (σ>σт), сопротивляемость этого материала пластической деформации при действии сил другого знака (сжатие) понижается. Это явление носит название эффекта Баушингера.

При растяжении образца происходит не только увеличение его длины, но и уменьшение размеров поперечного сечения, т. е. в упругой области деформация в поперечном направлении ε’ = -με, где ε— деформация в продольном направлении, μкоэффициент Пуассона. Для изотропных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 .

Характеристиками пластичности материала являются относительное удлинение δ и относительное сужение ψ при разрыве:

2016-10-22-16-20-25-skrinshot-ekrana,где l0, А0 длина рабочей части образца и площадь поперечного сечения до деформации; — длина рабочей части образца после разрыва; АК — конечная площадь поперечного сечения в шейке образца после разрыва.

По величине относительного удлинения δ при разрыве проводится разделение состояния материалов на пластичное и хрупкое. Материалы, имеющие к моменту разрушения достаточно большие значения δ>10%, относят к пластическим материалам;к хрупким относят материалы с относительным удлинением δ<3%.

Оценка пластических свойств материала может быть проведена по такой характеристике, как ударная вязкостьравная отношению работы, затрачиваемой на ударное разрушение образца [Дж или H·м] к площади поперечного сечения образца в месте концентратора, [м2 или см2].

Работа деформации W при разрушении образца может быть определена по диаграмме растяжения σ=f (ε). Так, если первоначальная длина образца l0, то работа деформации, совершаемая силой F на перемещении и:

2016-10-22-16-37-46-skrinshot-ekrana

где — перемещение в момент, предшествующий разрушению. Тогда по зависимости  σ= F/A0=f (ε) и ε=u/l0, находим

2016-10-22-17-30-37-skrinshot-ekrana

где W1площадь диаграммы деформирования (работа деформации на единицу объема материала).

Для сталей ударная вязкость 50—100 Н·м/см2. Материалы с ударной вязкостью менее 30 Н· м/см2относят к числу хрупких.

Некоторые пластичные материалы в районе площадки текучести обнаруживают особенность (например, титан), называемую «зубом текучести»; для таких материалов вводится понятие верхнего и нижнего предела текучести.

Экспериментальное изучение свойств материалов при сжатии проводится на коротких образцах с тем, чтобы исключить возможность искривления образца. Для пластичных материалов характер диаграммы σ=f (ε при сжатии примерно до возникновения текучести такой же, как и при растяжении. В процессе деформации сжатия образец укорачивается; при этом размеры поперечного сечения увеличиваются. Из-за трения между опорными плитами нагружающего устройства и торцевыми поверхностями образца он принимает бочкообразную форму. Для ряда пластичных материалов обнаружить напряжение, аналогичное временному сопротивлению при растяжении, не удается, так как образец сплющивается.

Хрупкие материалы проявляют значительно лучшую способность сопротивляться деформациям сжатия, чем деформациям растяжения; для них разрушающее напряжение при сжатии превышает предел прочности при растяжении в несколько раз. Разрушение хрупких материалов при сжатии происходит за счет образования трещин.

Источник