Что называют диаграммой растяжения
Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.
Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).
Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.
Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.
На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:
F — продольная растягивающая сила, [Н];
Δl — абсолютное удлинение рабочей части образца, [мм]
Рис. 1 Диаграмма растяжения стального образца
Как видно из рисунка, диаграмма имеет четыре характерных участка:
I — участок пропорциональности;
II — участок текучести;
III — участок самоупрочнения;
IV — участок разрушения.
Построение диаграммы
Рассмотрим подробнее процесс построения диаграммы.
В самом начале испытания на растяжение, растягивающая сила F, а следовательно, и деформация Δl стержня равны нулю, поэтому диаграмма начинается из точки пересечения соответствующих осей (точка О).
На участке I до точки A диаграмма вычерчивается в виде прямой линии. Это говорит о том, что на данном отрезке диаграммы, деформации стержня Δl растут пропорционально увеличивающейся нагрузке F.
После прохождения точки А диаграмма резко меняет свое направление и на участке II начинающемся в точке B линия какое-то время идет практически параллельно оси Δl, то есть деформации стержня увеличиваются при практически одном и том же значении нагрузки.
В этот момент в металле образца начинают происходить необратимые изменения. Перестраивается кристаллическая решетка металла. При этом наблюдается эффект его самоупрочнения.
После повышения прочности материала образца, диаграмма снова «идет вверх» (участок III) и в точке D растягивающее усилие достигает максимального значения. В этот момент в рабочей части испытуемого образца появляется локальное утоньшение (рис. 2), так называемая «шейка», вызванное нарушениями структуры материала (образованием пустот, микротрещин и т.д.).
Рис. 2 Стальной образец с «шейкой»
Вследствие утоньшения, и следовательно, уменьшения площади поперечного сечения образца, растягиваещее усилие необходимое для его растяжения уменьшается, и кривая диаграммы «идет вниз».
В точке E происходит разрыв образца. Разрывается образец конечно же в сечении, где была образована «шейка»
Работа затраченная на разрыв образца W равна площади фигуры образованной диаграммой. Ее приближенно можно вычислить по формуле:
W=0,8Fmax∙Δlmax
По диаграмме также можно определить величину упругих и остаточных деформаций в любой момент процесса испытания.
Для получения непосредственно механических характеристик металла образца диаграмму растяжения необходимо преобразовать в диаграмму напряжений.
Предел пропорциональности >
Примеры решения задач >
Лабораторные работы >
Источник
Диаграммы нагружения и разгружения образцов.
Закон повторного нагружения
        Диаграмма растяжения образца позволяет оценить поведение материала образца в упругой и упруго-пластической стадиях деформирования, определить механические характеристики материала.
        Для получения численно сопоставимых между собой механических характеристик материалов диаграммы растяжения образцов перестраивают в диаграммы растяжения материалов, т.е. в зависимость между напряжением   и деформацией  , которые определяют по формулам
     ,
где - сила, действующая на образец,
     
 - начальная площадь поперечного сечения и начальная длина расчетной части образца.
        Диаграмма растяжения материала, полученная при этих условиях (без учета изменения размеров расчетной части образца), называется условной диаграммой растяжения материала в отличие от действительной диаграммы растяжения, которую получают с учетом изменений размеров образца.
        Диаграмма растяжения материала зависит от его структуры, условий испытаний (температуры, скорости деформирования).
   
        Диаграмма растяжения образца из низкоуглеродистой стали при однократном нагружении до разрушения. Конечная точка диаграммы соответствует разрушению.
        На начальном участке диаграммы между силой   и удлинением   соблюдается прямая пропорциональная зависимость — образец подчиняется
закону Гука. В точке А диаграммы закон Гука нарушается: зависимость между силой и удлинением становится нелинейной. На диаграмме наблюдается горизонтальный участок (участок БВ), называемый площадкой текучести. В этой стадии испытания образец удлиняется (деформируется) практически при постоянной силе. Это явление называется текучестью, при этом образец деформируется равномерно и по всей длине рабочей части. В точке В площадка текучести заканчивается и начинается участок упрочнения. В конечной точке Д этого участка достигается максимальная сила, которую может выдержать образец.
        При нагружении до предела пропорциональности (точка Г диаграммы) и при дальнешем уменьшении нагрузки образец разгружается по линейному закону, который совпадает с законом первичного нагружения. В этом заключается «закон разгрузки». При нагружении образца в пределах действия закона Гука законы нагружения и последующего разгружения совпадают. При полной разгрузке образца его размеры и форма возвращаются к первоначальной кривой однократного нагружения.
        Напряженное состояние образца до точки Д — одноосное.
        Далее начинается участок разрушения или участок местной текучести. Он характеризуется местным утонением образца и появлянием шейки.
        На конечном участке ДЕ (после возникновения шейки) происходит локализация деформаций в шейке, в остальной части образца они практически не увеличиваются. Деформация в шейке неоднородная, имеет существенный градиент вдоль оси образца. Напряженное состояние на этом участке становится неоднородным, кроме того, оно изменяется качественно — становится трехосным.
Диаметр шейки уменьшается по мере деформирования образца, и образец разрывается по наименьшему сечению шейки.
        Если при испытании на растяжение нагружение приостановить, например, в точке Г диаграммы и осуществить разгружение образца, то окажется, что диаграмма разгружения и диаграмма предыдущего нагружения не совпадают. Линия разгружения в этом случае — прямая, параллельная начальному линейному участку диаграммы растяжения образца. Такой характер деформирования образца при его разгружении называется законом разгружения.
При повторном нагружении диаграмма до точки Г совпадает с линией разгружения, а затем будет совпадать с диаграммой растяжения образца при однократном нагружении.
Такой характер деформирования называется законом повторного нагружения и заключается в пропорциональной зависимости силы и удлинения, которая сохраняется до значения силы, достигнутой при первичном нагружении.
         При разгружении образца в пределах участка ОА законы нагружения, разгружения и повторного нагружения совпадают.
Источник
В ходе опыта на растяжение был получен график зависимости удлинения от приложенной силы.
Позже были введены относительные величины, такие как напряжение и относительное удлинение. Благодаря этим величинам можно модифицировать исходный график из опыта так, что по нему сразу можно будет определить необходимые величины, безотносительно того, какую геометрию имел образец в опыте.
Однако сделать это можно двумя путями:
- Искать истинные напряжения и истинные относительные удлинения
- Для нахождения напряжений использовать только исходную площадь поперечного сечения; для нахождения относительного удлинения абсолютное удлинение делить на исходную длину недеформированного стержня
Несмотря на то, что первый способ является точным по своей сути, в инженерной практике используют упрощённый подход. Во-первых, для расчётов на прочность ищутся действующие и допускаемые напряжения и затем сравниваются. В случае применения истинной диаграммы для определения допускаемых напряжений, расчётчикам так же пришлось бы вычислять точные площади для определения истинных действующих напряжений, что является неоправданно трудоёмким процессом. Во-вторых, на интересующем линейном участке истинная и упрощённая инженерная диаграммы практически совпадают:
Выше показана диаграмма растяжения для некоторого стального образца: кривая В – истинная диаграмма, кривая A – инженерная диаграмма.
Если применить второй (упрощённый) способ к диаграммам из опыта, то характер кривых не изменится:
Всё это рассказывается потому, что в современной практике люди, делающие расчёты на прочность, при выборе допускаемых напряжений руководствуются НЕ диаграммой растяжения в целом, а лишь некоторыми характерными точками, снятыми с этой диаграммы.
Для каждого металлического материала в дальнейшем будем выделять две характерные точки на оси напряжений:
- Напряжение, выше которого образец будет иметь заметные остаточные деформации
- Напряжение, при котором образец воспринял наибольшую силу
Если взглянуть на график для стали, то можно заметить, что имеется такой участок, на котором начинает значительно расти удлинение, при этом сила практически не меняется. Материал как будто течёт. Назовём этот участок площадкой текучести, а соответствующее напряжение – пределом текучести. Явление текучести материала характерно для строительных сталей, бронзы, латуни. Обозначим это напряжение как σт:
На графике для алюминия такой площадки нет. Тем не менее введём некоторый условный предел, скажем, напряжение, при котором остаточная деформация равняется 0.002 мм/мм или 0.2%. Назовём его условным пределом текучести и обозначим как σ02. Условный предел текучести используется для титановых и алюминиевых сплавов:
Вторая характерная точка – это напряжение, при котором образец выдержал наибольшую силу. Согласно диаграмме растяжения, этому напряжению соответствует начало образования шейки в образце – локализованного уменьшения поперечного сечения. После этого предела сила начинает падать, потому образец продолжил удлиняться. Если же после этого предела растягивающая сила продолжит увеличиваться, то образец разрушится. Этот предел назовём пределом прочности или временным сопротивлением разрушению и будем обозначать σв или σпч:
Также иногда встречается и третья характерная точка – это напряжение, соответствующее окончанию начального линейного участка. Это напряжение называется пределом пропорциональности. Оно чуть меньше предела текучести и, строго говоря, пользоваться нужно именно им, а не пределом текучести. Однако для его определения нужны очень точные измерительные приборы. Потому общепринято пользоваться пределом текучести в качестве предела, выше которого будут значительные остаточные деформации.
Помимо характерных напряжений, имеется также и одна характерная деформация — это относительное удлинение при разрыве. Это отношение абсолютного удлинения образца при разрыве к исходной недеформированной длине. Эту величину чаще всего обозначают греческой буквой δ, её размерность либо мм/мм, либо в %. По этой величине можно судить о степени пластичности того или иного материала.
Примеры того, в каком виде расчётчик получает представления о механических свойствах материала:
Д16 (дюраль)
30ХГСА (легированная сталь)
Источник
Физика
Учебник для 10 класса
- Чтобы, строить надежные здания, мосты, станки, разнообразные машины, необходимо знать механические свойства используемых материалов: дерева, бетона, стали, железобетона, пластмасс и т. п. Конструктор должен заранее знать поведение материалов при значительных деформациях, условия, при которых материалы начнут разрушаться. Сведения о механических свойствах различных материалов получают в основном экспериментально.
- В этом параграфе мы рассмотрим механические свойства твердых тел на примере исследования деформации растяжения, так как обычно испытание материалов проводят именно на растяжение и сжатие. Для этого нам необходимо ввести еще одно важное понятие.
Напряжение
В любом сечении деформируемого тела действуют силы упругости, препятствующие разрыву тела на части (рис. 9.15). Деформированное тело находится в напряженном состоянии, которое характеризуется особой величиной, называемой механическим напряжением или короче — напряжением.
Рис. 9.15
Напряжение — величина, равная отношению модуля силы упругости к площади поперечного сечения(1) тела:
где σ — напряжение, Fynp — модуль силы упругости и S — площадь поперечного сечения.
В СИ за единицу напряжения принимается паскаль (Па):
1 Па = 1 Н/м2.
Заметим, что в формуле (9.3.1) иногда удобно модуль силы упругости заменить на модуль F внешней деформирующей силы, уравновешивающей силу упругости.
Диаграмма растяжения
Для исследования деформации растяжения стержень из исследуемого материала при помощи специальных устройств (например, с помощью гидравлического пресса) подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения с от относительного удлинения е. Этот график называют диаграммой растяжения (рис. 9.16).
Рис. 9.16
Закон Гука
Многочисленные опыты показывают, что при малых деформациях напряжение а прямо пропорционально относительному удлинению ε (участок ОА диаграммы). Эта зависимость называется законом Гука. Его можно записать так:
Относительное удлинение в формуле (9.3.2) взято по модулю, так как закон Гука справедлив как для деформации растяжения, так и для деформации сжатия, когда ε < 0 (рис. 9.17).
Рис. 9.17
Коэффициент пропорциональности Е, входящий в закон Гука, называется модулем упругости или модулем Юнга.
Если относительное удлинение ε = 1, то σ = Е. Следовательно, модуль Юнга равен напряжению, возникающему в стержне при его относительном удлинении, равном единице. Так как ε = , то при ε = 1 Δl = l0. А это значит, что модуль Юнга равен напряжению, возникающему в стержне при удвоении длины образца. Практически любое тело (кроме резины) при упругой деформации не может удвоить свою длину: значительно раньше оно разорвется. Поэтому модуль Юнга определяют по формуле (9.3.2), измеряя напряжение о и относительное удлинение е при малых деформациях.
Из формулы (9.3.2) видно, что единица модуля Юнга в СИ такая же, как и единица напряжения, т. е. паскаль.
Чем больше модуль упругости Е, тем меньше деформируется стержень при прочих равных условиях (l0, S, F). Таким образом, модуль Юнга характеризует сопротивляемость материала упругой деформации растяжения или сжатия.
Закон Гука, записанный в форме (9.3.2), легко привести к виду (9.3.1).
Действительно, подставив в (9.3.2) получим:
Откуда
Обозначим
тогда
Таким образом, согласно (9.3.4) жесткость k стержня прямо пропорциональна произведению модуля Юнга на площадь поперечного сечения стержня и обратно пропорциональна его длине.
Пределы пропорциональности и упругости
Эксперимент показывает, что малые деформации полностью исчезают после снятия нагрузки (упругая деформация). При малых деформациях выполняется закон Гука. Максимальное напряжение, при котором еще выполняется закон Гука, называется пределом пропорциональности.
Если продолжать увеличивать нагрузку при растяжении и превзойти предел пропорциональности, то деформация становится нелинейной (линия ABCDEK, рис. 9.16). Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ графика). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации, называется пределом упругости σуп. Он соответствует точке В графика. Предел упругости превышает предел пропорциональности не более чем на 0,33%. В большинстве случаев их можно считать равными.
Предел и запас прочности
Если внешняя нагрузка такова, что в теле возникают напряжения, превышающие предел упругости, то характер деформации меняется (участок BCDEK графика, рис. 9.16). После снятия нагрузки образец не принимает прежние размеры, а остается деформированным, хотя и с меньшим удлинением, чем при нагрузке (пластическая деформация).
За пределом упругости при некотором значении напряжения, соответствующем точке С графика (см. рис. 9.16), удлинение возрастает практически без увеличения нагрузки (участок CD диаграммы почти горизонтален). Это явление называется текучестью материала.
При дальнейшем увеличении нагрузки напряжение повышается (от точки D), после чего в наименее прочной части образца появляется сужение («шейка»). Из-за уменьшения площади сечения (точка Е) для дальнейшего удлинения нужно меньшее напряжение, но в конце концов наступает разрушение образца (точка К). Наибольшее напряжение, которое выдерживает образец без разрушения, называется пределом прочности. Обозначим его σпч (оно соответствует точке Е диаграммы). Его значение сильно зависит от природы материала и его обработки.
Чтобы свести к минимуму возможность разрушения сооружения, инженер должен при расчетах допускать в его элементах такие напряжения, которые будут составлять лишь часть предела прочности материала. Их называют допустимыми напряжениями. Число, показывающее, во сколько раз предел прочности больше допустимого напряжения, называют коэффициентом запаса прочности.
Обозначив запас прочности через n, получим:
Запас прочности выбирается в зависимости от многих причин: качества материала, характера нагрузки (статическая или изменяющаяся со временем), степени опасности, возникающей при разрушении, и т. д. На практике запас прочности колеблется от 1,7 до 10. Выбрав правильно запас прочности, инженер может определить допустимое в конструкции напряжение.
Закон Гука для деформации сдвига
При деформации сдвига сила направлена по касательной к плоскости верхней грани тела (см. рис. 9.8J. Эта сила уравновешивается возникающей силой упругости: = -упр Отношение модуля силы упругости, возникающей при деформации сдвига, к площади верхней грани называется касательным напряжением и обозначается буквой τ:
Опыт показывает, что касательное напряжение х при малых деформациях прямо пропорционально углу сдвига а. Это и есть закон Гука для деформации сдвига. Он записывается так:
Коэффициент у называется модулем сдвига. Он численно равен касательному напряжению при угле сдвига в 1 рад. Очевидно, что для абсолютного большинства реальных материалов такое напряжение нельзя приложить к реальным телам, не разрушая их.
В СИ единицей модуля сдвига является 1 Па/рад.
Наиболее полную информацию об упругих свойствах материалов дает диаграмма растяжения, получаемая экспериментально. При малых деформациях напряжение в твердом теле прямо пропорционально относительной деформации (закон Гуна).
(1) Сечение тела производится плоскостью, перпендикулярной направлению силы упругости. При этом предполагается, что деформация тела во всех участках сечения одинакова.
Источник