Центральное сжатие или центральное растяжение

Центральное сжатие или центральное растяжение thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Центральное сжатие или центральное растяжение

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Центральным растяжением (или центральным сжатием) называется такой вид деформации, при котором в поперечном сечении бруса возникает только продольная сила (растягивающая или сжимающая), а все остальные внутренние усилия равны нулю. Иногда центральное растяжение (или центральное сжатие) кратко называют растяжением (или сжатием) .

Правило знаков
Растягивающие продольные усилия принято считать положительными, а сжимающие — отрицательными.

Рассмотрим прямолинейный брус (стержень), нагруженный силой F

Растяжение стержня

Определим внутренние усилия в поперечных сечениях стержня методом сечения.

Напряжение — это внутренне усилие N, приходящее на единицу площади A. Формула для нормальных напряжений σ при растяжении
$$sigma = frac{N}{A} $$

Так как поперечная сила при центральном растяжении-сжатии равна нулю, то и касательное напряжение [math]tau=0[/math].

Условие прочности при растяжении-сжатии
$$ max; sigma = {Biggvertfrac{N}{A}Biggvert} leq [sigma] $$

Дифференциальная зависимость внутренних усилий от распределенной нагрузки:

dN =q·dx

Определение внутренних усилий и напряжений

Рассмотрим вариант определения внутренних сил под действием произвольных сосредоточенных и распределенных сил, направленных вдоль стержня.

Продольное усилие N равняется сумме сил (сосредоточенных Fi и распределенных qi), расположенных по одну сторону от рассматриваемого сечения.

Общая формула для определения продольного усилия в произвольном сечении
$$N(x)=sum F _i + sum int q _i(x)cdot dx $$

Примем, что распределенная нагрузка постоянная. Тогда можно записать
$$N(x)=sum F _i + sum t q _i(x)cdot(x-L _{q _{i}н}) – sum t q _i(x)cdot(x-L _{q _{i}k}),$$
где Lqiн и Lqiк – расстояние от начала координат до начала и конца распределенной силы qi

Для эпюр продольных сил характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

  • Эпюры N всегда прямолинейные.
  • На участке, где нет распределенной нагрузки, эпюра N — прямая, параллельная оси; а на участке под распределенной нагрузкой — наклонная прямая.
  • Под точкой приложения внешней сосредоточенной силы на эпюре обязательно должен быть скачок (разрыв первого рода) на величину этой силы.

Правильность построения эпюры обеспечивается также надлежащим выбором так называемых характерных сечений, то есть тех сечений, в которых величина внутренней силы обязательно должна быть определена. К характерным сечениям относятся:

  • сечения, расположенные бесконечно близко по обе стороны от точек приложения сосредоточенных сил и моментов;
  • сечения, расположенные в начале и в конце каждого участка с распределенной нагрузкой;
  • сечения, расположенные бесконечно близко к опорам, а также на свободных концах.

Пример определения продольных усилий

Пусть стержень длиной L=15 нагружен двумя сосредоточенными растягивающими силами F1=7 в точке FL1=14 и F2=2 в точке FL2=6. Стержень загружен сжимающей распределенной силой q=-1.2, приложенной от начала стержня до Lq1=12. Нужно построить эпюру продольных усилий.

Для определения усилий воспользуемся пакетом SciLab ( см. также здесь).

Создадим две маленькие функции и запишем их в файл n_calc.sce

function [N]=Nx_calc(x,q,F)
// определение суммы всех сил справа от сечения x
Fsum=0;
r=size(F,’r’);
for i=1:r
Fsum=Fsum+F(i,2)*(x<F(i,1));
end;
q_sum=0;
r=size(q,’r’);
for i=1:r
q_sum=q_sum+q(i,3)*(x-q(i,1))*(x<q(i,1))-q(i,3)*(x-q(i,2))*(x<q(i,2));
end;
N=Fsum+q_sum;
endfunction
//—-
function [x,y]=N_calc(q,F,L,step)
// формирования таблицы усилий в стержне с шагом step
x=[0:step:L,F(:,1)’] // знак ‘ — транспонирование матрицы
x=gsort(x,’g’,’i’);
y=[];
for i=1:length(x)
y(i)=Nx_calc(x(i),q,F);
end
endfunction

Задаем начальные условия и строим эпюру продольных сил

// подключение нашей функции
exec(‘n_calc.sce’)
// распределенная нагрузка [начало,конец, интенсивность нагрузки]
q=[0, 12, -1.2];
// сосредоточенная нагрузка [точка приложения, значение силы]
F=[14, 4; 6, 2];
// Длина
L=15;
// шаг задаем очень маленьким
step=0.1;
// вычисление
[x,y]=N_calc(q,F,L,step);
// построение эпюры
plot2d(x,y)
plot2d3(x,y)
xgrid(3);

С помощью функции Nx_calc можно определить усилие N в любом сечении x.

Так как Scilab, GNU Octave и MATLAB имеют очень близкие языки, то для решения этой задачи в этих пакетах можно воспользоваться выше приведенным алгоритмом.

2й вариант

Приведем еще один вариант определения продольных усилий при центральном растяжении-сжатии с помощью языка программирования R.

# Центральное растяжение-сжатие
#
# определение суммы всех сил справа от сечения Xi
Nx_calc <- function (Xi,q,aF) {
Nsum <- function(Fx, x) {N<-Fx[2]*(x<=Fx[1]);}
Fsum<-sum(apply(aF,1, Nsum, x=Xi));
q_sum <- function(qx,x) {N<-qx[3]*(x-qx[1])*(x<=qx[1])-qx[3]*(x-qx[2])*(x<=qx[2]); }
qsum<-sum(apply(q,1, q_sum, x=Xi));
N<-Fsum+qsum;
}
 
 
# формирования таблицы усилий в стержне с шагом step
# и отображение эпюры
N_calc <- function (q,F,L,step) {
#превращаем вектор в матрицу
Fi<-matrix(F,ncol=2,byrow=TRUE);
dimnames(Fi)[[2]] <- c(‘x’,’F’);
#проверяем результат
print(Fi);
qi<-matrix(q,ncol=3,byrow=TRUE);
dimnames(qi)[[2]] <- c(‘Ln’,’Lk’,’q’);
print(qi);
 
x<- c(seq(from=0, to=L, by=step),Fi[,1]);
 
x<-sort(x);
y<- sapply(x,Nx_calc, q=qi, aF=Fi);
# рисуем
plot(x,y,type=»h»,ylab=»Усилие», col=»blue»,main=»Эпюра усилий N»);
lines(x,y);
abline(h=0);
# добавим точки, где приложены силы
xf<-Fi[,1];
yf<- sapply(xf,Nx_calc, q=qi, aF=Fi);
points(xf,yf);
text(xf,yf,yf,adj=1,pos=4);
}
 
# формирования таблицы усилий в стержне с шагом step
# и отображение эпюры (Усовершенствованный вариант №2)
N_calc2 <- function (q,F,L) {
#превращаем вектор в матрицу
Fi<-matrix(F,ncol=2,byrow=TRUE);
dimnames(Fi)[[2]] <- c(‘x’,’F’);
#проверяем результат
print(‘Сосредоточенные силы Fi’);print(Fi);
qi<-matrix(q,ncol=3,byrow=TRUE);
dimnames(qi)[[2]] <- c(‘Ln’,’Lk’,’q’);
print(‘Распределенные нагрузки’);print(qi);
 
z<-Fi[,1];
x1<-numeric();
eps=L/1000; # малая величина
for ( i in 1:length(z) ) {
x1<-c(x1,z[i]-eps,z[i],z[i]+eps)
}
x<- c(0,L,qi[,1],qi[,2],x1);
x<-sort(x);
y<- sapply(x,Nx_calc, q=qi, aF=Fi);
# рисуем
plot(x,y,type=»l»,ylab=»Усилие», main=»Эпюра усилий N», sub=’вариант №2′ );
abline(h=0);
polygon(c(x,L,0),c(y,0,0),col=’gray’)
# добавим точки, где приложены силы
xf<-Fi[,1];
yf<- sapply(xf,Nx_calc, q=qi, aF=Fi);
points(xf,yf);
text(xf,yf,yf,adj=1,pos=4);
# Определяем максимальное сжимающее и растягивающее усилие
y_max<-max(y);
y_min<-min(y);
if ( y_max > 0 ) {
x_max= x[which.max(y)];
print(sprintf(«Максимальное растягивающее значение N=%f при x=%f»,y_max,x_max ) );
points(x_max,y_max, col=»red»);
text(x_max,y_max,y_max,col=’blue’,pos=4);
}
if ( y_min < 0 ) {
x_min= x[which.min(y)];
print(sprintf(«Максимальное сжимающее значение N=%f при x=%f»,y_min,x[which.min(y)] ) );
points(x_min,y_min, col=»red»);
text(x_min,y_min,y_min,col=’blue’,adj=1,pos=4);
}
}

Исходный код функций

Ниже приведен сеанс построения эпюры N в R

> source(«N_calc.r», echo=TRUE);
 
> # Центральное растяжение-сжатие
> #
> # определение суммы всех сил справа от сечения Xi
> Nx_calc <- function (Xi,q,aF) {
+ Nsum <- function(Fx, …. [TRUNCATED]
 
> # формирования таблицы усилий в стержне с шагом step
> # и отображение эпюры
> #
> N_calc <- function (q,F,L,step) {
+ #превращаем вектор в матри …. [TRUNCATED]
 
> # формирования таблицы усилий в стержне с шагом step
> # и отображение эпюры (Усовершенствованный вариант №2)
> N_calc2 <- function (q,F,L) {
+ # …. [TRUNCATED]
>
> L=15; # Длина
> step=0.1; # шаг задаем очень маленьким
> # распределенная нагрузка [начало,конец, интенсивность нагрузки]
> q<-c(0, 12, -1.2);
> # сосредоточенная нагрузка. Порядок заполнения [точка приложения, значение силы] …
> F=c(14, 4, 6, 2);
> N_calc2(q,F,L)
[1] «Сосредоточенные силы Fi»
x F
[1,] 14 4
[2,] 6 2
[1] «Распределенные нагрузки»
Ln Lk q
[1,] 0 12 -1.2
[1] «Максимальное растягивающее значение N=4.000000 при x=12.000000»
[1] «Максимальное сжимающее значение N=-8.400000 при x=0.000000»
>

В результате на экране отобразится следующая эпюра:
Здесь сразу определены опасные сечения.
Так же, как и в предыдущем варианте, с помощью функции Nx_calc можно определить усилие N в любом сечении x.

Дополнительно

Пример из пособия МИИТ Эпюра продольных сил при центральном растяжении-сжатии (формат pdf).

Связанные статьи

  • Найти внутренние усилия и построить их эпюры для стержня
  • Закон Гука

метки: scilab,
внутренние усилия,
определение усилий: примеры,
растяжение-сжатие,
язык r

Источник

Цель: сформировать представление о деформации, напряжении и расчетах на прочность и жесткость при растяжении — сжатии.

Силы в поперечных сечениях стержня при растяжении — сжатии

Растяжением — сжатием называют такой вид нагружения стержня, при котором в его поперечных сечениях возникает только один внутренний силовой фактор — продольная (нормальная) сила N (растягивающая или сжимающая); все остальные внутренние силовые факторы при этом равны нулю. Этот вид нагружения при работе испытывают болты, шпильки, шатуны, штоки амортизаторов, буксирные тросы, тросы грузоподъемников, штанги механизмов газораспределения и многие другие детали автомобильной техники.

При расчетах после определения величин продольных сил по сечениям строится график изменения внутренних силовых факторов по длине данного стержня — эпюра продольных сил.

Продольная сила в каком-либо сечении стержня численно равна (а по направлению противоположна) сумме проекций на ось Z всех внешних сил, действующих на отсеченную часть стержня: N=1, (F°mc).

Правило знаков при построении эпюр продольных сил

Продольную силу N принято считать:

  • -положительной, если она направлена от сечения (растягивающая) (рис. 6, а);
  • -отрицательной, если эта сила направлена к сечению (сжимающая) (рис. 6, 6; см. табл. 2).

Для иллюстрации метода сечений при построении эпюры продольных (нормальных) сил рассмотрим следующий пример.

Правило знаков при построении эпюры продольных сил

Рис. 6. Правило знаков при построении эпюры продольных сил: а) осевое растяжение; б) осевое сжатие

Пример 2. Для стержня (рис. 7, а) построить эпюру продольных сил.

Построение

Для определения продольных сил в сечениях стержня применим метод сечений. Построение эпюры ведем со свободного конца.

Разобьем стержень на три участка, начиная от правого конца. Границами участков будем считать сечения, в которых приложены внешние силы (рис. 7, а). На каждом участке проведем произвольные сечения.

При этом координату проведенного сечения z можно отсчитывать от начала первого участка или от какой-либо другой точки.

В нашем случае при построении эпюры продольных сил удобно пользоваться подвижной системой координатных осей, центр которой каждый раз помещается в начале рассматриваемого участка. Таким образом, координата z на каждом участке стержня отсчитывается от начала данного участка.

Отбрасывая каждый раз левую часть заданного стержня, заменяем действие отброшенной части на оставшуюся неизвестной продольной силой N. Эту силу удобно первоначально направлять в сторону от рассматриваемого сечения, т. е. предварительно считать положительной (растягивающей).

Тогда из условий равновесия отсеченной части стержня получим величину и соответствующий знак продольной силы N на каждом участке (рис. 7, б, в, г).

Построение эпюры продольных сил для консольной балки

Рис. 7. Построение эпюры продольных сил для консольной балки: а) расчетная схема; б) первый участок, правая отсеченная часть; в) второй участок, правая отсеченная часть; г) третий участок, правая отсеченная часть; d) эпюра продольных сил

Для нашего стержня запишем условия равновесия и найдем на каждом участке продольную силу в сечении, положение которого определяется текущей координатой z,:

I участок (0 ()

Центральное сжатие или центральное растяжение

II участок (0 2 ()

Центральное сжатие или центральное растяжение

III участок (0 3 2€)

Центральное сжатие или центральное растяжение

Знак «плюс» в полученном ответе показывает, что выбранное нами направление продольных сил на участках I и III правильное, данные силы являются растягивающими.

Знак «минус» в ответе, полученном для II участка, показывает, что продольная сила должна быть направлена в противоположную сторону, т. е. на сжатие.

NB! Величина продольной силы N на протяжении каждого отдельного участка постоянна, так как функция изменения N не зависит от г,.

Величины продольных сил на каждом участке откладываем с учетом полученного знака (рис. 7, д).

Построенную эпюру проверяют по «скачкам»: в точках приложения сосредоточенной силы на эпюре N должен быть «скачок» на величину этой силы. Фактически «скачки» носят условный характер, так как они отражают быстрое изменение продольной силы в соответствующем сечении стержня.

Источник