Центральное сжатие или центральное растяжение

Центральное сжатие или центральное растяжение thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Центральное сжатие или центральное растяжение

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Читайте также:  Симптомы при растяжении предплечья

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Центральным растяжением (или центральным сжатием) называется такой вид деформации, при котором в поперечном сечении бруса возникает только продольная сила (растягивающая или сжимающая), а все остальные внутренние усилия равны нулю. Иногда центральное растяжение (или центральное сжатие) кратко называют растяжением (или сжатием) .

Правило знаков
Растягивающие продольные усилия принято считать положительными, а сжимающие — отрицательными.

Рассмотрим прямолинейный брус (стержень), нагруженный силой F

Растяжение стержня

Определим внутренние усилия в поперечных сечениях стержня методом сечения.

Напряжение — это внутренне усилие N, приходящее на единицу площади A. Формула для нормальных напряжений σ при растяжении
$$sigma = frac{N}{A} $$

Так как поперечная сила при центральном растяжении-сжатии равна нулю, то и касательное напряжение [math]tau=0[/math].

Условие прочности при растяжении-сжатии
$$ max; sigma = {Biggvertfrac{N}{A}Biggvert} leq [sigma] $$

Дифференциальная зависимость внутренних усилий от распределенной нагрузки:

dN =q·dx

Определение внутренних усилий и напряжений

Рассмотрим вариант определения внутренних сил под действием произвольных сосредоточенных и распределенных сил, направленных вдоль стержня.

Продольное усилие N равняется сумме сил (сосредоточенных Fi и распределенных qi), расположенных по одну сторону от рассматриваемого сечения.

Общая формула для определения продольного усилия в произвольном сечении
$$N(x)=sum F _i + sum int q _i(x)cdot dx $$

Примем, что распределенная нагрузка постоянная. Тогда можно записать
$$N(x)=sum F _i + sum t q _i(x)cdot(x-L _{q _{i}н}) – sum t q _i(x)cdot(x-L _{q _{i}k}),$$
где Lqiн и Lqiк – расстояние от начала координат до начала и конца распределенной силы qi

Для эпюр продольных сил характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

  • Эпюры N всегда прямолинейные.
  • На участке, где нет распределенной нагрузки, эпюра N — прямая, параллельная оси; а на участке под распределенной нагрузкой — наклонная прямая.
  • Под точкой приложения внешней сосредоточенной силы на эпюре обязательно должен быть скачок (разрыв первого рода) на величину этой силы.
Читайте также:  Что помогает от растяжения связки

Правильность построения эпюры обеспечивается также надлежащим выбором так называемых характерных сечений, то есть тех сечений, в которых величина внутренней силы обязательно должна быть определена. К характерным сечениям относятся:

  • сечения, расположенные бесконечно близко по обе стороны от точек приложения сосредоточенных сил и моментов;
  • сечения, расположенные в начале и в конце каждого участка с распределенной нагрузкой;
  • сечения, расположенные бесконечно близко к опорам, а также на свободных концах.

Пример определения продольных усилий

Пусть стержень длиной L=15 нагружен двумя сосредоточенными растягивающими силами F1=7 в точке FL1=14 и F2=2 в точке FL2=6. Стержень загружен сжимающей распределенной силой q=-1.2, приложенной от начала стержня до Lq1=12. Нужно построить эпюру продольных усилий.

Для определения усилий воспользуемся пакетом SciLab ( см. также здесь).

Создадим две маленькие функции и запишем их в файл n_calc.sce

function [N]=Nx_calc(x,q,F)
// определение суммы всех сил справа от сечения x
Fsum=0;
r=size(F,’r’);
for i=1:r
Fsum=Fsum+F(i,2)*(x<F(i,1));
end;
q_sum=0;
r=size(q,’r’);
for i=1:r
q_sum=q_sum+q(i,3)*(x-q(i,1))*(x<q(i,1))-q(i,3)*(x-q(i,2))*(x<q(i,2));
end;
N=Fsum+q_sum;
endfunction
//—-
function [x,y]=N_calc(q,F,L,step)
// формирования таблицы усилий в стержне с шагом step
x=[0:step:L,F(:,1)’] // знак ‘ — транспонирование матрицы
x=gsort(x,’g’,’i’);
y=[];
for i=1:length(x)
y(i)=Nx_calc(x(i),q,F);
end
endfunction

Задаем начальные условия и строим эпюру продольных сил

// подключение нашей функции
exec(‘n_calc.sce’)
// распределенная нагрузка [начало,конец, интенсивность нагрузки]
q=[0, 12, -1.2];
// сосредоточенная нагрузка [точка приложения, значение силы]
F=[14, 4; 6, 2];
// Длина
L=15;
// шаг задаем очень маленьким
step=0.1;
// вычисление
[x,y]=N_calc(q,F,L,step);
// построение эпюры
plot2d(x,y)
plot2d3(x,y)
xgrid(3);

С помощью функции Nx_calc можно определить усилие N в любом сечении x.

Так как Scilab, GNU Octave и MATLAB имеют очень близкие языки, то для решения этой задачи в этих пакетах можно воспользоваться выше приведенным алгоритмом.

2й вариант

Приведем еще один вариант определения продольных усилий при центральном растяжении-сжатии с помощью языка программирования R.

# Центральное растяжение-сжатие
#
# определение суммы всех сил справа от сечения Xi
Nx_calc <- function (Xi,q,aF) {
Nsum <- function(Fx, x) {N<-Fx[2]*(x<=Fx[1]);}
Fsum<-sum(apply(aF,1, Nsum, x=Xi));
q_sum <- function(qx,x) {N<-qx[3]*(x-qx[1])*(x<=qx[1])-qx[3]*(x-qx[2])*(x<=qx[2]); }
qsum<-sum(apply(q,1, q_sum, x=Xi));
N<-Fsum+qsum;
}
 
 
# формирования таблицы усилий в стержне с шагом step
# и отображение эпюры
N_calc <- function (q,F,L,step) {
#превращаем вектор в матрицу
Fi<-matrix(F,ncol=2,byrow=TRUE);
dimnames(Fi)[[2]] <- c(‘x’,’F’);
#проверяем результат
print(Fi);
qi<-matrix(q,ncol=3,byrow=TRUE);
dimnames(qi)[[2]] <- c(‘Ln’,’Lk’,’q’);
print(qi);
 
x<- c(seq(from=0, to=L, by=step),Fi[,1]);
 
x<-sort(x);
y<- sapply(x,Nx_calc, q=qi, aF=Fi);
# рисуем
plot(x,y,type=»h»,ylab=»Усилие», col=»blue»,main=»Эпюра усилий N»);
lines(x,y);
abline(h=0);
# добавим точки, где приложены силы
xf<-Fi[,1];
yf<- sapply(xf,Nx_calc, q=qi, aF=Fi);
points(xf,yf);
text(xf,yf,yf,adj=1,pos=4);
}
 
# формирования таблицы усилий в стержне с шагом step
# и отображение эпюры (Усовершенствованный вариант №2)
N_calc2 <- function (q,F,L) {
#превращаем вектор в матрицу
Fi<-matrix(F,ncol=2,byrow=TRUE);
dimnames(Fi)[[2]] <- c(‘x’,’F’);
#проверяем результат
print(‘Сосредоточенные силы Fi’);print(Fi);
qi<-matrix(q,ncol=3,byrow=TRUE);
dimnames(qi)[[2]] <- c(‘Ln’,’Lk’,’q’);
print(‘Распределенные нагрузки’);print(qi);
 
z<-Fi[,1];
x1<-numeric();
eps=L/1000; # малая величина
for ( i in 1:length(z) ) {
x1<-c(x1,z[i]-eps,z[i],z[i]+eps)
}
x<- c(0,L,qi[,1],qi[,2],x1);
x<-sort(x);
y<- sapply(x,Nx_calc, q=qi, aF=Fi);
# рисуем
plot(x,y,type=»l»,ylab=»Усилие», main=»Эпюра усилий N», sub=’вариант №2′ );
abline(h=0);
polygon(c(x,L,0),c(y,0,0),col=’gray’)
# добавим точки, где приложены силы
xf<-Fi[,1];
yf<- sapply(xf,Nx_calc, q=qi, aF=Fi);
points(xf,yf);
text(xf,yf,yf,adj=1,pos=4);
# Определяем максимальное сжимающее и растягивающее усилие
y_max<-max(y);
y_min<-min(y);
if ( y_max > 0 ) {
x_max= x[which.max(y)];
print(sprintf(«Максимальное растягивающее значение N=%f при x=%f»,y_max,x_max ) );
points(x_max,y_max, col=»red»);
text(x_max,y_max,y_max,col=’blue’,pos=4);
}
if ( y_min < 0 ) {
x_min= x[which.min(y)];
print(sprintf(«Максимальное сжимающее значение N=%f при x=%f»,y_min,x[which.min(y)] ) );
points(x_min,y_min, col=»red»);
text(x_min,y_min,y_min,col=’blue’,adj=1,pos=4);
}
}

Исходный код функций

Ниже приведен сеанс построения эпюры N в R

> source(«N_calc.r», echo=TRUE);
 
> # Центральное растяжение-сжатие
> #
> # определение суммы всех сил справа от сечения Xi
> Nx_calc <- function (Xi,q,aF) {
+ Nsum <- function(Fx, …. [TRUNCATED]
 
> # формирования таблицы усилий в стержне с шагом step
> # и отображение эпюры
> #
> N_calc <- function (q,F,L,step) {
+ #превращаем вектор в матри …. [TRUNCATED]
 
> # формирования таблицы усилий в стержне с шагом step
> # и отображение эпюры (Усовершенствованный вариант №2)
> N_calc2 <- function (q,F,L) {
+ # …. [TRUNCATED]
>
> L=15; # Длина
> step=0.1; # шаг задаем очень маленьким
> # распределенная нагрузка [начало,конец, интенсивность нагрузки]
> q<-c(0, 12, -1.2);
> # сосредоточенная нагрузка. Порядок заполнения [точка приложения, значение силы] …
> F=c(14, 4, 6, 2);
> N_calc2(q,F,L)
[1] «Сосредоточенные силы Fi»
x F
[1,] 14 4
[2,] 6 2
[1] «Распределенные нагрузки»
Ln Lk q
[1,] 0 12 -1.2
[1] «Максимальное растягивающее значение N=4.000000 при x=12.000000»
[1] «Максимальное сжимающее значение N=-8.400000 при x=0.000000»
>

Читайте также:  Связи работают на растяжение

В результате на экране отобразится следующая эпюра:
Здесь сразу определены опасные сечения.
Так же, как и в предыдущем варианте, с помощью функции Nx_calc можно определить усилие N в любом сечении x.

Дополнительно

Пример из пособия МИИТ Эпюра продольных сил при центральном растяжении-сжатии (формат pdf).

Связанные статьи

  • Найти внутренние усилия и построить их эпюры для стержня
  • Закон Гука

метки: scilab,
внутренние усилия,
определение усилий: примеры,
растяжение-сжатие,
язык r

Источник

Цель: сформировать представление о деформации, напряжении и расчетах на прочность и жесткость при растяжении — сжатии.

Силы в поперечных сечениях стержня при растяжении — сжатии

Растяжением — сжатием называют такой вид нагружения стержня, при котором в его поперечных сечениях возникает только один внутренний силовой фактор — продольная (нормальная) сила N (растягивающая или сжимающая); все остальные внутренние силовые факторы при этом равны нулю. Этот вид нагружения при работе испытывают болты, шпильки, шатуны, штоки амортизаторов, буксирные тросы, тросы грузоподъемников, штанги механизмов газораспределения и многие другие детали автомобильной техники.

При расчетах после определения величин продольных сил по сечениям строится график изменения внутренних силовых факторов по длине данного стержня — эпюра продольных сил.

Продольная сила в каком-либо сечении стержня численно равна (а по направлению противоположна) сумме проекций на ось Z всех внешних сил, действующих на отсеченную часть стержня: N=1, (F°mc).

Правило знаков при построении эпюр продольных сил

Продольную силу N принято считать:

  • -положительной, если она направлена от сечения (растягивающая) (рис. 6, а);
  • -отрицательной, если эта сила направлена к сечению (сжимающая) (рис. 6, 6; см. табл. 2).

Для иллюстрации метода сечений при построении эпюры продольных (нормальных) сил рассмотрим следующий пример.

Правило знаков при построении эпюры продольных сил

Рис. 6. Правило знаков при построении эпюры продольных сил: а) осевое растяжение; б) осевое сжатие

Пример 2. Для стержня (рис. 7, а) построить эпюру продольных сил.

Построение

Для определения продольных сил в сечениях стержня применим метод сечений. Построение эпюры ведем со свободного конца.

Разобьем стержень на три участка, начиная от правого конца. Границами участков будем считать сечения, в которых приложены внешние силы (рис. 7, а). На каждом участке проведем произвольные сечения.

При этом координату проведенного сечения z можно отсчитывать от начала первого участка или от какой-либо другой точки.

В нашем случае при построении эпюры продольных сил удобно пользоваться подвижной системой координатных осей, центр которой каждый раз помещается в начале рассматриваемого участка. Таким образом, координата z на каждом участке стержня отсчитывается от начала данного участка.

Отбрасывая каждый раз левую часть заданного стержня, заменяем действие отброшенной части на оставшуюся неизвестной продольной силой N. Эту силу удобно первоначально направлять в сторону от рассматриваемого сечения, т. е. предварительно считать положительной (растягивающей).

Тогда из условий равновесия отсеченной части стержня получим величину и соответствующий знак продольной силы N на каждом участке (рис. 7, б, в, г).

Построение эпюры продольных сил для консольной балки

Рис. 7. Построение эпюры продольных сил для консольной балки: а) расчетная схема; б) первый участок, правая отсеченная часть; в) второй участок, правая отсеченная часть; г) третий участок, правая отсеченная часть; d) эпюра продольных сил

Для нашего стержня запишем условия равновесия и найдем на каждом участке продольную силу в сечении, положение которого определяется текущей координатой z,:

I участок (0 ()

Центральное сжатие или центральное растяжение

II участок (0 2 ()

Центральное сжатие или центральное растяжение

III участок (0 3 2€)

Центральное сжатие или центральное растяжение

Знак «плюс» в полученном ответе показывает, что выбранное нами направление продольных сил на участках I и III правильное, данные силы являются растягивающими.

Знак «минус» в ответе, полученном для II участка, показывает, что продольная сила должна быть направлена в противоположную сторону, т. е. на сжатие.

NB! Величина продольной силы N на протяжении каждого отдельного участка постоянна, так как функция изменения N не зависит от г,.

Величины продольных сил на каждом участке откладываем с учетом полученного знака (рис. 7, д).

Построенную эпюру проверяют по «скачкам»: в точках приложения сосредоточенной силы на эпюре N должен быть «скачок» на величину этой силы. Фактически «скачки» носят условный характер, так как они отражают быстрое изменение продольной силы в соответствующем сечении стержня.

Источник