Цель испытания металла на растяжение

Цель испытания металла на растяжение thumbnail

Испытание на растяжение металла заключаются в растяжении образца с построением графика зависимости удлинения образца (Δl) от прилагаемой нагрузки (P), с последующим перестроением этой диаграммы в диаграмму условных напряжений (σ — ε)

Испытания на растяжение проводятся по ГОСТ 1497, по этому же ГОСТу определяются и образцы на которых проводятся испытания.

Образцы для испытания на растяжениеКак уже говорилось выше, при испытаниях строится диаграмма растяжения металла. На ней есть несколько характерных участков:

Испытание на растяжение

  1. Участок ОА — участок пропорциональности между нагрузкой Р и удлинением ∆l. Это участок, на котором сохраняется закон Гука. Данная пропорциональность была открыта Робертом Гуком в 1670 г. и в дальнейшем получила название закона Гука.
  2. Участок ОВ — участок упругой деформации. Т.е., если к образцу приложить нагрузку, не превышающую Ру, а потом разгрузить, то при разгрузке деформации образца будут уменьшаться по тому же закону, по которому они увеличивались при нагружении

Выше точки В диаграмма растяжения отходит от прямой — деформация начинает расти быстрее нагрузки, и диаграмма принимает криволинейный вид. При нагрузке, соответствующей Рт (точка С ), диаграмма переходит в горизонтальный участок. В этой стадии образец получает значительное остаточное удлинение практически без увеличения нагрузки. Получение такого участка на диаграмме растяжения объясняется свойством материала деформироваться при постоянной нагрузке. Это свойство называется текучестью материала, а участок диаграммы растяжения, параллельный оси абсцисс, называется площадкой текучести.
Зуб текучести на диаграмме растяжения металлаИногда площадка текучести носит волнообразный характер. Это чаще касается растяжения пластичных материалов и объясняется тем, что вначале образуется местное утонение сечения, затем это утонение переходит на соседний объем материала и этот процесс развивается до тех пор, пока в результате распространения такой волны не возникает общее равномерное удлинение, отвечающее площадке текучести. Когда имеется зуб текучести, при определении механических свойств материала, вводят понятия о верхнем и нижнем пределах текучести.

После появления площадки текучести, материал снова приобретает способность сопротивляться растяжению и диаграмма поднимается вверх. В точке D усилие достигает максимального значения Pmax. При достижении усилия Pmax на образце появляется резкое местное сужение — шейка. Уменьшение площади сечения шейки вызывает падение нагрузки и в момент, соответствующий точке K диаграммы, происходит разрыв образца.

Прилагаемая нагрузка для растяжения образца зависит от геометрии этого образца. Чем больше площадь сечения, тем более высокая нагрузка необходима для растяжения образца. По этой причине, получаемая машинная диаграмма не дает качественной оценки механических свойств материала. Чтобы исключить влияние геометрии образца, машинную диаграмму перестраивают в координатах σ − ε путем деления ординат P на первоначальную площадь сечения образца A0 и абсцисс ∆l на lо. Перестроенная таким образом диаграмма называется диаграммой условных напряжений. Уже по этой, новой диаграмме, определяют механические характеристики материала.

Определяются следующие механические характеристики:

Предел пропорциональности σпц – наибольшее напряжение, после которого нарушается справедливость закона Гука σ = Еε , где Е – модуль продольной упругости, или модуль упругости первого рода. При этом Е =σ/ε = tgα , т. е. модуль E это тангенс угла наклона прямолинейной части диаграммы к оси абсциссФормула определения предела пропорциональности

Предел упругости σу — условное напряжение, соответствующее появлению остаточных деформаций определенной заданной вели­чины (0,05; 0,001; 0,003; 0,005%); допуск на остаточную деформа­цию указывается в индексе при σуФормула определения предела упругости

Предел текучести σт – напряжение, при котором происходит увеличение деформации без заметного увеличения растягивающей нагрузки

Формула расчета предела текучестиТакже выделяют условный предел текучести — это условное напряжение, при котором остаточная деформация достигает определенной величины (обычно 0,2% от рабочей длины образца; тогда условный предел текучести обозначают как σ0,2). Величину σ0,2 определяют, как правило, для материалов, у которых на диаграмме отсутствует площадка или зуб текучести

Предел прочности (временное сопротивление разрыву) σв – напряжение, соответствующее наибольшей нагрузке Pmax , предшествующей разрыву образца

Формула расчета предела прочности

Кроме характеристик прочности материала, при испытании на растяжение определяют также характеристики пластичности — относительное удлинение δ и относительное сужение ψ

Формула расчета относительного удлинения

где lо – первоначальная расчетная длина образца, а lк – конечная расчетная длина образца

Формула расчета относительного сужения образца

Площади поперечного сечения образца

Изопропиловый спирт цена за тонну оптом — https://www.dcpt.ru

Источник

Лабораторная работа № 1

Цель работы – изучить поведение малоуглеродистой стали при растяжении и определить ее механические характеристики.

Основные сведения

Испытания на растяжение являются основным и наиболее распространенным методом лабораторного исследования и контроля механических свойств материалов.

Эти испытания проводятся и на производстве для установления марки поставленной заводом стали или для разрешения конфликтов при расследовании аварий.

В таких случаях, кроме металлографических исследований, определяются главные механические характеристики на образцах, взятых из зоны разрушения конструкции. Образцы изготавливаются по ГОСТ 1497-84 и могут иметь различные размеры и форму (рис. 1.1).

Образцы для испытания на растяжение

Рис. 1.1. Образцы для испытания на растяжение

Между расчетной длиной образца lо и размерами поперечного сечения Ао (или dо для круглых образцов) выдерживается определенное соотношение:

В испытательных машинах усилие создается либо вручную — механическим приводом, либо гидравлическим приводом, что присуще машинам с большей мощностью.

Читайте также:  С растяжением в горы

В данной работе используется универсальная испытательная машина УММ-20 с гидравлическим приводом и максимальным усилием 200 кН, либо учебная универсальная испытательная машина МИ-40КУ (усилие до 40 кН).

Порядок выполнения и обработка результатов

Образец, устанавливаемый в захватах машины, после включения насоса, создающего давление в рабочем цилиндре, будет испытывать деформацию растяжения. В измерительном блоке машины есть шкала с рабочей стрелкой, по которой мы наблюдаем рост передаваемого усилия F.

Зависимость удлинения рабочей части образца от действия растягивающей силы во время испытания отображается на миллиметровке диаграммного аппарата в осях F-Δl (рис. 1.2).

В начале нагружения деформации линейно зависят от сил, потому участок I диаграммы называют участком пропорциональности. После точки В начинается так называемый участок текучести II.

На этой стадии стрелка силоизмерителя как бы спотыкается, приостанавливается, от точки В на диаграмме вычерчивается либо прямая, параллельная горизонтальной оси, либо слегка извилистая линия — деформации растут без увеличения нагрузки. Происходит перестройка структуры материала, устраняются нерегулярности в атомных решетках.

Далее самописец рисует участок самоупрочнения III. При дальнейшем увеличении нагрузки в образце происходят необратимые, большие деформации, в основном концентрирующиеся в зоне с макронарушениями в структуре – там образуется местное сужение — «шейка».

На участке IV фиксируется максимальная нагрузка, затем идет снижение усилия, ибо в зоне «шейки» сечение резко уменьшается, образец разрывается.

При нагружении на участке I в образце возникают только упругие деформации, при дальнейшем нагружении появляются и пластические — остаточные деформации.

Если в стадии самоупрочнения начать разгружать образец (например, от т. С), то самописец будет вычерчивать прямую СО1. На диаграмме фиксируются как упругие деформации Δlу (О1О2), так и остаточные Δlост (ОО1). Теперь образец будет обладать иными характеристиками.

Так, при новом нагружении этого образца будет вычерчиваться диаграмма О1CDЕ, и практически это будет уже другой материал. Эту операцию, называемую наклеп, широко используют, например, в арматурных цехах для улучшения свойств проволоки или арматурных стержней.

Диаграмма растяжения (рис. 1.2) характеризует поведение конкретного образца, но отнюдь не обобщенные свойства материала. Для получения характеристик материала строится условная диаграмма напряжений, на которой откладываются относительные величины – напряжения σ=F/A0 и относительные деформации ε=Δl/l0 (рис. 1.3), где А0, l0 – начальные параметры образца.

Диаграмма растяжения образца из малоуглеродистой стали

Рис. 1.2. Диаграмма растяжения образца из малоуглеродистой стали

Условная диаграмма напряжений при растяжении

Рис. 1.3. Условная диаграмма напряжений при растяжении

Условная диаграмма напряжений при растяжении позволяет определить следующие характеристики материала (рис. 1.3):

σпц – предел пропорциональности – напряжение, превышение которого приводит к отклонению от закона Гука. После наклепа σпц может быть увеличен на 50-80%;

σу – предел упругости – напряжение, при котором остаточное удлинение достигает 0,05%. Напряжение σу очень близко к σпц и обнаруживается при более тонких испытаниях. В данной работе σу не устанавливается;

σт – предел текучести – напряжение, при котором происходит рост деформаций при постоянной нагрузке.

Иногда явной площадки текучести на диаграмме не наблюдается, тогда определяется условный предел текучести, при котором остаточные деформации составляют ≈0,2% (рис. 1.4);

Определение предела упругости и условного предела текучести

Рис. 1.4. Определение предела упругости и условного предела текучести

σпч (σв) – предел прочности (временное сопротивление) – напряжение, соответствующее максимальной нагрузке;

σр – напряжение разрыва. Определяется условное σур и истинное σир=Fр/Аш, где Аш – площадь сечения «шейки» в месте разрыва.

Определяются также характеристики пластичности – относительное остаточное удлинение

δ = (l1 – l0)∙100% / l0,

где l1 – расчетная длина образца после разрыва,
и относительное остаточное сужение

ψ = (А0 — Аш)∙100% / А0.

По диаграмме напряжений можно приближенно определить модуль упругости I рода

E=σпц/ε=tgα,

причем после операции наклепа σпц возрастает на 20-30%.

Работа, затраченная на разрушение образца W, графически изображается на рис. 1.2 площадью диаграммы OABDEO3. Приближенно эту площадь определяют по формуле:
W = 0,8∙Fmax∙Δlmax.

Удельная работа, затраченная на разрушение образца, говорит о мере сопротивляемости материала разрушению w = W/V, где V = A0∙l0 – объем рабочей части образца.

По полученным прочностным и деформационным характеристикам и справочным таблицам делается вывод по испытуемому материалу о соответствующей марке стали

Контрольные вопросы

  1. Изобразите диаграмму растяжения образца из малоуглеродистой стали (Ст.3). Покажите полные, упругие и остаточные абсолютные деформации при нагружении силой, большей, чем Fт.
  2. На каком участке образца происходят основные деформации удлинения? Как это наблюдается на образце? Какие нагрузки фиксируются в этот момент?
  3. Объясните, почему после образования шейки дальнейшее растяжение происходит при все уменьшающейся нагрузке?
  4. Перечислите механические характеристики, определяемые в результате испытаний материала на растяжение. Укажите характеристики прочности и пластичности.
  5. Дайте определение предела пропорциональности.
  6. Дайте определение предела упругости.
  7. Дайте определение предела текучести.
  8. Дайте определение предела прочности.
  9. Как определить предел текучести при отсутствии площадки текучести? Покажите, как это сделать, по конкретной диаграмме.
  10. Какие деформации называются упругими, какие остаточными? Укажите их на полученной в лабораторной работе диаграмме растяжения стали.
  11. Как определяется остаточная деформация после разрушения образца?
  12. Выделите на диаграмме растяжения образца из мягкой стали упругую часть его полного удлинения для момента действия максимальной силы.
  13. Какое явление называется наклепом? До какого предела можно довести предел пропорциональности материалов с помощью наклепа?
  14. Как определяется работа, затраченная на разрушение образца? О каком свойстве материала можно судить по удельной работе, затраченной на разрушение образца?
  15. Как определить марку стали и допускаемые напряжения для нее после проведения лабораторных испытаний?
  16. Чем отличается диаграмма истинных напряжений при растяжении от условной диаграммы?
  17. Можно ли определить модуль упругости материала по диаграмме напряжений?
  18. Как определить работу, затрачиваемую на деформации текучести лабораторного образца?
Читайте также:  Сообщение на тему первая помощь при растяжении

Испытание материалов на сжатие >
Краткая теория >
Примеры решения задач >

Источник

Цель работы: определение механических характеристик металлов при испытаниях образцов на растяжение, построение диаграммы истинных напряжений, выбор марки металла с характеристиками, соответствующими полученным при испытаниях.

Оборудование: универсальная испытательная машина.

Образцы: стандартные цилиндрические образцы с l0 = 10d0, материалы – сталь, сплавы цветных металлов.

Измерительный инструмент: штангенциркуль 0-250 мм, с точностью измерения 0,05 мм, микрометр 0-25 мм, с точностью измерения 0,01 мм.

1.1. Методика проведения испытаний на растяжение

Основные требования к методике испытаний на растяжение оговорены стандартами [1]. Эти требования следует рассматривать как минимальные. При выполни, например, исследовательских работ они могут быть значительно повышены. Соблюдение стандартной методики испытания особенно важно в тех случаях, когда результаты являются критерием качества продукции или ее паспортными характеристиками.

Каждый образец перед испытанием маркируют, измеряют и размечают. Маркировку наносят вне пределов рабочей длины образца. Диаметр цилиндрических образцов следует измерять с точностью не ниже 0,01 мм при d0 ≤ 10 мм и 0,05 мм при d0 > 10 мм. Начальная расчетная длина образца l0 с точность до 1% (от величины l0) в пределах рабочей длины ограничивается неглубокими кернами или рисками. Если образец хрупкий, то даже тонкие риски на поверхности могут сильно изменить результаты испытаний. В таких случаях границы расчетной длины надо отмечать без повреждения поверхности, например карандашом, краской и т.д. Помимо меток, ограничивающих расчетную длину, рекомендуется наносить в пределах l0 риски через каждые 5 или 10 мм. Это необходимо для более точного измерения удлинения после разрыва.

Все измерения размеров после испытания производят с точностью не ниже 0,1 мм. Для получения более точных результатов пользуются инструментальными микроскопами.

С целью увеличения точности каждый размер следует измерять несколько раз. Например, ГОСТ 1497-84 обязывает проводить замер диаметра в середине и по краям рабочей части образца с последующим определением среднего значения, по которому рассчитывают площадь его поперечного сечения.

Величина нагрузки должна определяться с точностью до 0,5 наименьшего деления индикатора силоизмерительного механизма. Диапазон нагрузок выбирают таким образом, чтобы силы сопротивления образца, по которым будут определяться прочностные характеристики, были не меньше 0,1 шкалы выбранного диапазона и не ниже 0,04 предельной нагрузки испытательной машины. При этом желательно, чтобы максимальная сила сопротивления образца находилась на второй половине шкалы. Именно при таком выборе диапазона нагрузок будет обеспечена наибольшая точность расчета характеристик свойств. Рассмотрим это на конкретном примере.

Обычно свойства материала исследуемых образцов ориентировочно известны до опыта (в крайнем случае, их можно оценить, испытав один-два образца с использованием любого диапазона нагрузок). Зная размеры образцов, можно рассчитать по свойствам величину соответствующих сил. Предположим, что сила, при которой начинается пластическая деформация (соответствующая пределу текучести) Рt = 2,5 кН, а разрушающее усилие Pk= 13,2 кН. Конечно, в этом случае надо выбрать диапазон нагрузок 20 кН. Тогда будут удовлетворены все изложенные выше требования и можно будет достичь большей точности, чем в случае использования, например, диапазона 0-40 кН.

Как уже отмечалось, основным результатом испытания на растяжение является индикаторная диаграмма нагрузка – удлинение, по которой рассчитывают большинство механических характеристик. Многие из них соответствуют определенным точкам диаграммы. Следовательно, вся диаграмма в целом служит наиболее полной характеристикой материала.

1.2. Порядок выполнения работы

Образцы (рисунок 1) после разметки и обмера с необходимой точностью (результаты занести в таблицу 1) подвергают растяжению с записью индикаторной диаграммы (диаграммы нагрузка-удлинение, первичной диаграммы растяжения).

После проведения испытания необходимо произвести измерения в соответствии с рисунком 2. Результаты занести в таблицу 1.

Таблица 1. Значение размеров образцов до и после растяжения

Размер, мм Образец 1 Образец 2
До деформации
L    
D    
l    
l0    
d01    
d02    
d03    
d0ср    
После деформации
Lk    
lk    
l0k    
d k1    
dk2    
dk3    
dkср    
   

Рисунок 1. Образец до деформации

Рисунок 2. Образец после деформации

На полученных индикаторных диаграммах (диаграммы привести в отчете по лабораторной работе) нанести характерные точки S, B и K, провести оси координат (рисунок 3). По данным таблицы 1 определить абсолютное удлинение DlK, площади поперечных сечений до деформации (F0) и соответствующие характерным точкам B (FB,) и К () диаграммы. Результаты занести в таблицу 2.

Читайте также:  Покраснение ноги при растяжение

Таблица 2. Значения абсолютных удлинений и площадей поперечных сечений

Параметры Образец 1 Образец 2
DlK, мм    
DlB, мм    
F0, мм2    
FB, мм2    
, мм2    

Рисунок 3. Диаграмма «нагрузка-удлинение»

По значению DlК = Lk — L определить масштаб индикаторной диаграммы по оси деформаций по формуле

, мм/мм,

где ХК – расстояние от начала координат индикаторной диаграммы до проекции точки К на ось деформаций (учесть участок упругой деформации).

Зная MDl определить DLB = MDl ×XB, где XB – расстояние от начала координат до проекции точки B на ось деформаций.

Полученное значение DlBзанести в таблицу 2.

По значению РВ найти масштаб индикаторной диаграммы по оси нагрузок

, Н/мм,

где РВ – максимальная сила растяжения, соответствующая точке B диаграммы, и зафиксированная на шкале испытательной машины при растяжении образца, Н;

УВ – расстояние от начала координат до проекции точки В на ось нагрузок.

По диаграмме, зная Мр определить нагрузки в характерных точках S и K, данные занести в таблицу 3.

Таблица 3. Значения сил сопротивления образца при растяжении

Силы в характерных точках S, B и K, Н Образец 1 Образец 2
PS    
PB    
PK    

Рассчитать прочностные характеристики – условный предел текучести sS; условный предел прочности sB, истинное напряжение SB и истинное сопротивление разрыву SКпо формулам:

, , , ,

где РS, РВ, РK — соответственно силы сопротивления образца деформации в точках S, B и K диаграммы растяжения; F0, FB и FK — соответственно площади поперечного сечения образца до деформации, в точках В и К диаграммы растяжения. Значения напряжений записать в таблицу 4.

Таблица 4. Прочностные свойства изучаемых металлов

Напряжение, МПа Образец 1 Образец 2
sS    
sB    
sK    
SS    
SB    
SK    

По результатам испытаний на растяжение определяют два параметра, отражающие пластические свойства металлов – относительное удлинение δ и относительное сужение ψ. Относительное удлинение δ характеризует в основном способность материала к равномерной деформации, относительное сужение ψ – к локальной деформации.

Характеристики δi и ψi, соответствующие какой-либоточке i индикаторной диаграммы, определяют по формулам:

,

,

где Dli– абсолютное удлинение, соответствующее какой-либо точке индикаторной диаграммы, например точке B (DlB), точке K (DlK);

Fi – площадь поперечного сечения, соответствующая какой-либо точке индикаторной диаграммы. Определить значения δB, δK, ψB, ψK и заполнить таблицу 5.

Таблица 5. Пластические свойства изучаемых металлов

Показатель, % Образец 1 Образец 2
δB    
δK    
ψB    
ψK    

По значениям σB, δK определить из справочной литературы наиболее близкую марку стали по ГОСТ 380 – 94 или 1050 – 88 [2, 3].

По значениям истинных напряжений S (таблица 4), относительных деформаций δ, и относительных сужений ψ в точках S, B и K построить графические зависимости и для первого и второго образцов. При этом ввиду малой величин δ и ψ в точке S считаем δS ≈ 0, ψS ≈ 0.

Выводы.

В выводах отразить характер изменения силы сопротивления материала образца деформации в зависимости от удлинения δ, объяснить причины изменения силы. Пояснить особенность формоизменения образцов на участках OS, SB и SK индикаторной диаграммы. Отразить характер изменения истинных напряжений S по мере растяжения образцов. Сопоставить прочностные и пластические свойства установленных марок сталей образцов, отметить каким образом свойства зависят от химического состава сравниваемых марок сталей.

Контрольные вопросы

1. Что обеспечивает условия подобия механических испытаний. Назовите виды подобия.

2. Что называется первичной диаграммой растяжения?

3. Перечислите типы силоизмерительных механизмов испытательных машин.

4. Назовите вид напряженного состояния в цилиндрической части при испытании образца на растяжение.

5. Чем обусловлено деформационное упрочнение?

6. Дайте определение коэффициента (модуля) деформационного упрочнения.

7. Назовите прочностные характеристики металлов.

8. Дайте определение предела пропорциональности, объясните физический смысл.

9. Дайте определение предела упругости. Объясните физический смысл.

10. Дайте определение предела текучести. Объясните физический смысл.

11. Дайте определение предела прочности.

12. Охарактеризуйте истинное сопротивление разрыву.

13. Назовите пластические характеристики металлов.

14. Как определяется относительно удлинение?

15. Как определяется относительное сужение?

16. Какой марке материала соответствуют значения sВ и d образцов, испытанных в лабораторной работе (определить по справочной литературе)?

17. Каким образом по графикам и можно подтвердить, что относительное удлинение δ характеризует в основном способность металлов к равномерной деформации, а относительное сужение ψ – к локальной.

Дайте письменные ответы на вопросы в отчете по лабораторной работе.

Рекомендуемая литература

1. ГОСТ 1497-84 Металлы. Методы испытаний на растяжение. https://www.cad.dp.ua/gost/files/GOST1497-84.pdf

2. ГОСТ 380-94 Сталь углеродистая обыкновенного качества. https://www.mc.ru/gost/gost380-94.pdf

3. ГОСТ 1050-88 Сталь углеродистая качественная конструкционная.

Источник