Закон гука выполняется только при одноосном растяжении
Физика, 10 класс
Урок 9. Закон Гука
Перечень вопросов, рассматриваемых на этом уроке
1.Закона Гука.
2.Модели видов деформаций.
3. Вычисление и измерение силы упругости, жёсткости и удлинение пружины.
Глоссарий по теме
Сила упругости – это сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение.
Деформация – изменение формы или размеров тела, происходящее из-за неодинакового смещения различных частей одного и того же тела в результате воздействия другого тела. Виды деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.
Закон Гука – сила упругости, возникающая при деформации тела (растяжение или сжатие пружины), пропорциональна удлинению тела (пружины), и направлена в сторону противоположную направлению перемещений частиц тела
Основная и дополнительная литература по теме:
Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112
Рымкевич А.П. Сборник задач по физике. 10-11класс.- М.:Дрофа,2009. Стр 28-29
ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.
Основное содержание урока
В окружающем нас мире мы наблюдаем, как различные силы заставляют тела двигаться, делать прыжки, перемещаться, взаимодействовать.
Однако можно также наблюдать как происходят разрушения, так называемые деформации, различных сооружений: мостов, домов, разнообразных машин.
Что необходимо знать инженеру конструктору, строителю, чтобы строить надёжные сооружения: дома, мосты, машины?
Почему деформации различны, какие виды деформации могут быть у конкретных тел? Почему одни тела после деформации могут восстановиться, а другие нет? От чего зависит и можно ли рассчитать величину этих деформаций?
Деформация — это изменение формы или размеров тела, в результате воздействия на него другого тела.
Почему деформации не одинаковы у различных тел, если мы их, к примеру, сжимаем? Давайте вспомним что мы знаем о строении вещества.
Все вещества состоят из частиц. Между этими частицами существуют силы взаимодействия- эти силы электромагнитной природы. Эти силы в зависимости от расстояний между частицами проявляются, то как силы притяжения, то как силы отталкивания.
Сила упругости – сила, возникающая при деформации любых тел, а также при сжатии жидкостей и газов. Она противодействует изменению формы тел.
Мы можем наблюдать несколько видов деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.
При деформации растяжения межмолекулярные расстояния увеличиваются. Такую деформацию испытывают струны в музыкальных инструментах, различные нити, тросы, буксирные тросы.
При деформации сжатия межмолекулярные расстояния уменьшаются. Под такой деформацией находятся стены, фундаменты сооружений и зданий.
При деформации изгиба происходят неординарные изменения, одни межмолекулярные слои увеличиваются, а другие уменьшаются. Такие деформации испытывают перекрытия в зданиях и мостах.
При кручении – происходят повороты одних молекулярных слоёв относительно других. Эту деформацию испытывают: валы, витки цилиндрических пружин, столярный бур, свёрла по металлу, валы при бурении нефтяных скважин. Деформация среза тоже является разновидностью деформации сдвига.
Первое научное исследование упругого растяжения и сжатия вещества провёл английский учёный Роберт Гук.
Роберт Гук установил, что при малых деформациях растяжения или сжатия тела абсолютное удлинение тела прямо пропорционально деформирующей силе.
F упр = k ·Δℓ = k · Iℓ−ℓ0I закон Гука.
k− коэффициент пропорциональности, жёсткость тела.
ℓ0 — начальная длина.
ℓ — конечная длина после деформации.
Δℓ = I ℓ−ℓ₀ I- абсолютное удлинение пружины.
— единица измерения жёсткости в системе СИ.
При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе, а слишком большие деформации разрушают тело.
Для расчёта движения тел под действием силы упругости, нужно учитывать направление этой силы. Если принять за начало отсчёта крайнюю точку недеформированного тела, то абсолютное удлинение тела можно характеризовать конечной координатой деформированного тела. При растяжении и сжатии сила упругости направлена противоположно смещению его конца.
Закон Гука можно записать для проекции силы упругости на выбранную координатную ось в виде:
F упр x = − kx — закона Гука.
k – коэффициент пропорциональности, жёсткость тела.
x = Δℓ = ℓ−ℓ0 удлинение тела (пружины, резины, шнура, нити….)
Fупр x = − kx
Закон Гука:
Fупр = k·Δℓ = k · Iℓ−ℓ0I
Графиком зависимости модуля силы упругости от абсолютного удлинения тела является прямая, угол наклона которой к оси абсцисс зависит от коэффициента жёсткости k. Если прямая идёт круче к оси силы упругости, то коэффициент жёсткости этого тела больше, если же уклон прямой идёт ближе к оси абсолютного удлинения, следует понимать, что жёсткость тела меньше.
График, зависимости проекции силы упругости на ось ОХ, того же тела от значения х.
Необходимо помнить, что закон Гука хорошо выполняется при только при малых деформациях. При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе.
Разбор тренировочных заданий
1. По результатам исследования построен график зависимости модуля силы упругости пружины от её деформации. Чему равна жёсткость пружины? Каким будет удлинение этой пружины при подвешивании груза массой 2кг?
Решение: По графику идёт линейная зависимость модуля силы упругости и удлинение пружины. Зависимость физических величин по Закону Гука:
F упр x = − kx (1)
Fупр =k·Δℓ = k · Iℓ−ℓ0I (2)
Из формулы (1) выражаем:
Зная что Fт = mg = 20 Н, Fт = Fупр= k·Δℓ следовательно
Ответ: жёсткость пружины равна 200 Н/м, удлинение пружины равно 0,1м.
2. К системе из кубика массой 1 кг и двух пружин приложена постоянная горизонтальная сила. Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Удлинение первой пружины 0,05 м. Жёсткость первой пружины равна 200 Н/м. Удлинение второй пружины 0,25 м.
- Чему равна приложенная к системе сила?
- Чему равна жёсткость второй пружины?
- Во сколько раз жёсткость второй пружины меньше чем первой?
Решение:
1. По условию задачи система находится в покое. Зная жёсткость и удлинение пружины найдём силу, которая уравновешивает приложенную постоянную горизонтальную силу.
F = F упр =k1·Δℓ1= 200 Н/м·0,05 м = 10 Н
2. Жёсткость второй пружины:
3. k1/ k2 = 200/40 = 5
Ответ: F=10 Н; k2 = 40 Н/м; k1/k2 = 5.
Источник
Возьмём однородный стержень и приложим к его основаниям растягивающие (или сжимающие) усилия (рис.7.1). Пусть — длина недеформированного стрежня, а S — его сечение. После приложения силы F его длина получает приращение D и делается равной . Отношение
, (7.1)
называется относительным удлинением стержня.
В случае растягивающих сил оно положительно, в случае сжимающих сил – отрицательно.
Деформация стержня связана с возникновением упругих сил, с которыми одна часть стержня действует на другую, с которой она граничит. Такие силы действуют в любом поперечном сечении. Внешняя сила, приложенная к каждой из этих двух частей, уравновешивается упругой силой Fупр, действующей на рассматриваемую часть со стороны другой. Силу, перпендикулярную поперечному сечению стержня и отнесенную к единице его площади, называют нормальным упругим напряжением
. (7.2)
В системе СИ упругое напряжение измеряется в Н/м2 .
Опыт показывает, что при малых деформациях, возникающие в теле нормальные упругие напряжения пропорциональны относительной деформации, т.е.
, (7.3)
где Е — постоянная, называемая модулем Юнга и зависящая только от материала стержня и его физического состояния..
Формула (7.3) выражает закон Гука для деформации растяжения и сжатия. Из нее следует, что модуль Юнга равен тому нормальному напряжению, при котором относительное удлинение равно единице. Длина стержня в этом случае увеличилась бы в 2 раза, если бы при такой деформации выполнялся закон Гука. Однако, при таких больших деформациях закон Гука не выполняется и либо образец разрушается, либо нарушается пропорциональность между деформацией и силой.
Под действием растягивающей или сжимающей силы изменяются не только продольные, но и поперечные размеры стержня. Характеристикой этого изменения является относительное поперечное сжатие (растяжение)
, (7.4)
где d — поперечный размер образца.
При растяжении e i < 0, при сжатии e i>0. Отношение
, (7.5)
называется коэффициентом Пуассона.
Для большинства изотропных материалов, к которым относятся, например, металлы, имеющие поликристаллическую структуру, он близок к 0,25. Модуль Юнга Е и коэффициент Пуассона m полностью характеризуют упругие свойства изотропного материала. Все прочие упругие постоянные могут быть выражены через Е и m.
Деформированное тело обладает запасом потенциальной энергии.Эта энергия называетсяупругой. Она равна работе, затраченной на деформацию тела.
Приложим к стержню растягивающую силу ƒ(x) и будем непрерывно увеличивать ее от начального значения ƒ=0 до конечного значения ƒ=F. При этом удлинение будет меняться от x = 0 до конечного значения x = Dl. По закону Гука
. (7.6)
Вся работа, совершаемая при деформации, запасается в виде упругой энергии, поэтому
. (7.7)
Эта энергия распределена по всему объему деформированного тела, что дает основание ввести плотность энергии упругой деформации, т.е. энергию, приходящуюся на единицу объема стержня,
. (7.8)
Сдвиг
Сдвигом называют такую деформацию твердого тела, при которой все его плоские слои, параллельные некоторой плоскости, называемой плоскостью сдвига, смещаются параллельно друг другу (рис.7.2). Сдвиг происходит под действием касательной силы F, приложенной к грани ВС, параллельной плоскости сдвига. Грань АD, параллельная ВС, закреплена неподвижно. При малом сдвиге:
, (7.9)
где D х = — абсолютный сдвиг, а g — угол сдвига, называемый также относительным сдвигом.
В любом сечении образца, параллельном плоскости сдвига, возникают уже не нормальные, а касательные упругие напряжения, определяемые по формуле
. (7.10)
По закону Гука касательные напряжения пропорциональны относительному сдвигу,т.е.
, (7.11)
где G — модуль сдвига.
Модуль сдвига численно равен тому касательному напряжению, которое возникло бы в образце при относительном сдвиге, равном единице, если бы в этом случае выполнялся закон Гука.
Между модулем сдвига, модулем Юнга и коэффициентом Пуассона существует следующее соотношение
. (7.12)
Объемная плотность энергии упругой деформации при сдвиге, как и при растяжении (7.8), прямо пропорциональна квадрату напряжения и обратно пропорциональна модулю упругости:
. (7.13)
Кручение
Возьмем однородный стержень, закрепим его верхний конец, а к нижнему концу приложим закручивающие силы, создающие вращающий момент. В результате этого каждый радиус нижнего основания повернется вокруг продольной оси на некоторый угол. Такая деформация называется кручением.
Деформация кручения является неоднородной. Это значит, что деформация внутри образца меняется от точки к точке. Чем дальше от оси вращения, тем больше деформация.
Закон Гука для деформации кручения записывается в виде
, (7.14)
где ƒ – постоянная для данного образца величина, называемая модулем кручения, — угол кручения, — крутящий момент.
Модуль кручения показывает, какой момент сил нужно приложить, чтобы закрутить стержень на угол в 1 рад. В отличие от модулей Юнга и сдвига он зависит не только от материала, но и от геометрических размеров образца.
Деформацию кручения можно свести к деформации сдвига. Выведем выражение для модуля кручения.
Стержень (рис.7.3) можно представить состоящим из множества цилиндрических оболочек (трубок) радиусом r, длиной L и толщиной dr. Площадь основания трубки
dS = 2p rdr , (7.15)
а момент упругих сил, действующих на это основание:
dM = 2 p r dr τ r , (7.16)
где τ — тангенциальное напряжение в этом основании.
С учетом того, что каждый элемент цилиндрической трубки сдвигается на угол:
, (7.17)
то по закону Гука для деформации сдвига получим
. (7.18)
Таким образом, момент сил, действующих на цилиндрическую трубку, равен
. (7.19)
Полный момент сил, действующих на стержень радиуса R, найдется интегрированием:
. (7.20)
Сопоставляя (7.20) с законом Гука для деформации кручения (7.14), получим выражение для модуля кручения:
. (7.21)
Экспериментально модуль кручения можно измерить. С этой целью подвесим на проволоке массивное симметричное телои возбудим крутильные колебания. Эти колебания будут гармоническими с периодом
, (7.22)
где I – момент инерции тела, f – модуль кручения проволоки. Если момент инерции тела известен, то, определив период колебаний, можно вычислить по формуле (9.22) модуль кручения проволоки.
Примеры решения задач
1. Нижнее основание стального цилиндра диаметром d=20 см и высотой h=20 см закреплено неподвижно. На верхнее основание действует горизонтальная сила F=20 кН. Найти: 1) тангенциальное напряжение в материале цилиндра, 2) смещение верхнего основания цилиндра, 3) потенциальную энергию и объемную плотность деформированного образца.
Решение
1) Тангенциальное напряжение материала деформированного образца выражается формулой
.
В данном случае , поэтому получим
.
Сделав вычисления, найдем
2) Смещение верхнего основания цилиндра будет равно
,
где — угол сдвига.
В соответствии с законом Гука
,
где = 8,1.1010 Па — модуль сдвига стали.
Произведя подстановку, получим
.
Выполнив вычисления, найдем
1,6 мкм.
3. Потенциальная энергия и объемная плотность энергии деформированного образца определятся по формулам
и .
Сделав вычисления, получим, U=159 мДж, w= 2,5 Дж/м3.
2. Определить относительное удлинение алюминиевого стержня, если при его растяжении затрачена работа А=6,9 Дж. Длина стержня l=1 м, площадь поперечного сечения S=1 мм2, модуль Юнга для алюминия Е=69 ГПа.
Решение
Работа, затраченная при растяжении стержня, переходит в его упругую потенциальную энергию
,
где — нормальное напряжение деформированного образца, V =Sl – его объем.
В соответствии с законом Гука
.
После подстановки и преобразований, найдем
.
Вычисления дают
Основные положения
1. Упругое напряжение – физическая величина, равная упругой силе, приходящейся на единицу площади:
— нормальное напряжение, сила направлена по нормали к площадке
;
— тангенциальное напряжение, сила направлена по касательной к площадке
.
2. Закон Гука – напряжение упруго деформированного тела прямо пропорционально его относительной деформации:
— деформация растяжения (сжатия)
;
— деформация сдвига
.
3. Коэффициент Пуассона – отношение поперечного сужения к продольному удлинению:
4. Объемная плотность энергии упруго деформированного тела:
— деформация растяжения (сжатия)
;
— деформация сдвига
.
Контрольные вопросы
1. Что такое упругие напряжения? Как определяются нормальные и тангенциальные напряжения?
2. Как формулируется закон Гука для различных видов деформации?
3. Каков физический смысл модуля Юнга и модуля сдвига?
4. Как определяется коэффициент Пуассона?
5. От чего зависит объемная плотность энергии упруго деформированного тела?
Механика жидкостей и газов
Источник
Сила – это количественная мера взаимодействия тел. В рамках классической механики мы имеем дело со следующими видами сил: силами инерции, гравитационными, электростатическими, упругими, силами трения и сопротивления. Объектами воздействия классических сил являются м.т., с.м.т., твердое тело, сплошная среда (твердое вещество, газ, жидкость).
Силы упругости, силы трения и сопротивления определяются взаимодействиеями между молекулами вещества и имеют в своей основе электромагнитное происхождение и действуют в масштабах межмолекулярных расстояний.
Закон Гука
Закон Гука применим к деформируемым объектам, возвращающимся к исходному состоянию после снятия силы. Например, для растягивающейся пружины справедлива формула силы
F = kx, (1)
где F – действующая сила,
k – коэффициент пропорциональности, или жесткость пружины,
x – растяжение пружины.
Кроме линейных объектов типа пружины, на практике встречается множество других типов деформируемых объектов, по отношению к которым можно применять закон Гука. Только в этом случае коэффициент k может быть тензором 2–го порядка соответствующей размерности. Движение при этом обратимо.
Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил. Если после прекращения действия сил тело возвращается в прежнее состояние (деформация исчезает), то деформация называется упругой. Деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело – пластическими. Обычно деформация бывает упругой, если ее величина не превосходит определенного предела (предела упругости). Внутри такого деформированного тела возникают силы, называемые силами упругости.
Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба, кручения и сдвига.
Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела.
Природа упругих сил электрическая. При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации. Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена английским физиком Гуком.
Закон Гука для одностороннего растяжения (сжатия) формулируют так: сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела. Опытным путем установлено, что при малых деформациях упругая сила пропорциональна величине деформации. Например, при растяжении пружины на величину Δlупругая сила F вдоль оси пружины будет равна
F = –kΔl, (2)
где F – сила упругости;
Δl – удлинение (деформация) тела;
k – коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ – ньютон на метр (Н/м).
Знак «–» в формуле (2) указывает, что направление силы противоположно направлению деформации (при растяжении пружины сила F сжимает ее и наоборот, при сжатии растягивает).
Упругую силу принято характеризовать не ее непосредственной величиной F, а отношением F к площади поверхности S, через которую она действует. Это отношение называют напряжением. В случае, когда сила F перпендикулярна поверхности S, напряжение называют нормальным. Его обозначают σ. Напряжение измеряют в паскалях [Па]. (1 Па = 1 Н / 1 м2).
Деформацию твердых тел чаще характеризуют не абсолютным изменением длины Δl, а относительным удлинением ε (3)
где l – длина тела. ε – безразмерная величина.
При малых деформациях относительное удлинение пропорционально нормальному напряжению. Эту связь деформации и напряжения также называют законом Гука. Его принято записывать в следующей форме (4):
Коэффициент пропорциональности Е в законе Гука характеризует упругость данного материала и называется модулем (продольной) упругости (модулем Юнга). Модуль Юнга численно равен такому нормальному напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза (если бы для такой большой деформации выполнялся закон Гука). Модуль упругости выражается в паскалях.
Диаграмма растяжения
Используя формулу (3), (4), по экспериментальным значениям относительного удлинения ε можно вычислить соответствующие им значения нормального напряжения σ, возникающего в деформированном теле, и построить график зависимости σ от ε. Этот график называют диаграммой растяжения. Подобный график для металлического образца изображен на рис. 1.
Рис. 1. График деформации реального тела.
На участке 0–1 график имеет вид прямой, проходящей через начало координат. Это значит, что до определенного значения напряжения σп деформация является упругой и выполняется закон Гука, т. е. нормальное напряжение пропорционально относительному удлинению. Максимальное значение нормального напряжения σп, при котором еще выполняется закон Гука, называют пределом пропорциональности.
При дальнейшем увеличении нагрузки зависимость напряжения от относительного удлинения становится нелинейной (участок 1–2), хотя упругие свойства тела еще сохраняются. Максимальное значение нормального напряжения, при котором еще не возникает остаточная деформация, называют пределом упругости. (Предел упругости лишь на сотые доли процента превышает предел пропорциональности.) Увеличение нагрузки выше предела упругости (участок 2–3) приводит к тому, что деформация становится остаточной.
Затем образец начинает удлиняться практически при постоянном напряжении (участок 3–4 графика). Это явление называют текучестью материала. Нормальное напряжение σт, при котором остаточная деформация достигает заданного значения, называют пределом текучести.
При напряжениях, превышающих предел текучести, упругие свойства тела в известной мере восстанавливаются, и оно вновь начинает сопротивляться деформации (участок 4–5 графика). Максимальное значение нормального напряжения σпр, при превышении которого происходит разрыв образца, называют пределом прочности.
Таблица 1. Пример таблицы модулей упругости металлов
—————————————————————————————-
Ссылка на мою статью Как написать формулы в статье на Дзен?
Мои странички на Дзен: https://zen.yandex.ru/id/5e036c95fc69ab00aecfe6e9
Если хотите узнать, что обозначает слово или словосочетание, в ОПЕРЕ выделите это слово(сочетание), нажмите правую клавишу мыши и выберите «Искать в …», далее — «Yandex». Если это текстовая ссылка – выделите ее, нажмите правую клавишу мыши, выберите «перейти …». Все! О-ля-ля!
Если вам понравилась статья, то поставьте «лайк» и подпишитесь на канал! Если не понравилась – все равно комментируйте и подписывайтесь. Этим вы поможете каналу. И делитесь ссылками в ваших соцсетях!
Источник