Закон гука сопромат растяжение
Сопротивление материалов
Закон Гука для продольных нагрузок
Более 350 лет назад 25-летний английский физик Роберт Гук (в англоязычной транскрипции — Хук) сформулировал зависимость между относительным линейным удлинением тела и величиной растягивающей тело силы.
В оригинале формулировка закона, предложенная Гуком, звучит примерно так:
«Какова сила, таково и удлинение».
В современной трактовке эта зависимость в общем виде формулируется следующим образом:
«Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации».
Казалось бы, очевидный вывод, который напрашивается естественным образом – чем больше сила, приложенная к брусу, тем в большей степени он деформируется. Тем не менее, заслуга Гука заключается в том, что именно он обратил внимание, на линейную (прямо пропорциональную) зависимость между нагрузкой и относительной деформацией.
Открытия многих, казалось бы — очевидных, закономерностей совершают гении. Ведь в течении предшествующих Ньютону человеческих поколений считалось, что чем легче тело, тем дольше оно падает на земную поверхность с высоты. И лишь гений смог опровергнуть это заблуждение миллионов людей. По сути, только великий Эйнштейн сделал неочевидное открытие, которому, впрочем, предшествовали научные исследования и гипотезы многих талантов.
Долгое время закон Гука являлся единственным инструментом новоявленной науки сопротивление материалов, и лежал в основе всех расчетов конструкций на прочность и жесткость. Лишь спустя много лет учеными были установлены более сложные (непропорциональные) зависимости между напряжениями и приложенными к элементам конструкции силовыми факторами, которые, впрочем, тоже основываются на законе Гука.
Большую роль в развитии науки сопротивление материалов сыграли такие видные ученые, как Герц, Журавский, Эйлер, Ясинский и другие, установившие зависимости между напряжениями и сложными видами нагружений. Большинство этих зависимостей и выводов основываются на экспериментально-опытных исследованиях, т. е. получены не только с помощью математического анализа (эмпирические зависимости).
Роберт Гук (1635—1703) считается одним из талантливейших ученых своего времени. Обладавший кипучей творческой энергией, он совершил много интересных открытий в самых разных науках – фундаментальной физике, термодинамике, акустике, оптике, биологии. Достаточно сказать, что Гуку многие ученые отдают пальму первенства в открытии закона всемирного тяготения, считая, что он раньше Ньютона пришел к его осознанию.
Роберт Гук отличался способностью браться за изучение многих явлений в природе, и, зачастую, не закончив исследование одного явления, на полпути к открытию брался за совершенно другой научный труд, а результатами его незавершенных выводов пользовались последователи, увековечивая свое имя в науке.
Тем не менее, этот человек останется в памяти потомков, как автор знаменитого закона Гука.
Математически закон Гука для деформаций растяжения и сжатия можно записать так:
σ = Еε,
где:
σ – напряжение в сечении бруса,
ε — относительное удлинение бруса, которое определяется по формуле ε = Δl/l (здесь Δl – абсолютное удлинение бруса, l – начальная длина бруса),
Е – коэффициент пропорциональности, который называют модулем продольной упругости (или модулем упругости первого рода, или модулем Юнга).
Коэффициент Е является справочной (определяемой экспериментально) величиной, характеризующей способность материала противостоять деформации и измеряется в Паскалях (1 Па = Н/м2).
Поскольку 1 Паскаль – очень маленькая величина (муха весом 14 мг, севшая на столик площадью 1 м2 окажет на него давление, примерно равное 0,00014 Па), поэтому чаще применяют ее производную – 1 МПа (миллион Паскалей, или 1 МПа = 1 000 000 Па).
Математическое выражение закона Гука можно представить в расширенном виде, подставив вместо σ (напряжения) его зависимость от силы и площади сечения:
σ = F/A, и вместо ε (удельное удлинение) выражение Δl/l. Тогда получим:
F/A = Е(Δl/l), откуда можно выразить абсолютное удлинение (укорочение) бруса в результате приложения внешней силы F:
Δl = Fl/(EA).
Это выражение можно сформулировать следующим образом: абсолютное удлинение (укорочение) бруса прямо пропорционально приложенной внешней нагрузке и длине бруса и обратно пропорционально площади поперечного сечения бруса.
Выражение ЕА, стоящее в знаменателе дроби, часто называют жесткостью сечения при растяжении и сжатии.
Приведенные формулы закона Гука применимы только для брусьев или их участков постоянного поперечного сечения, изготовленных из однородного материала и при постоянной продольной силе. Если брус имеет ступенчатую форму, или состоит из участков, изготовленных из разных материалов, и нагружен на разных участках несколькими продольными силами, то абсолютное изменение длины всего бруса определяют, как сумму абсолютных удлинений его отдельных участков:
Δl = Σ (Δli)
В заключение следует отметить, что закон Гука справедлив в ограниченном диапазоне внешних нагрузок и не применим, когда некоторые напряжения (или деформации) достигают предельных значений, характерных для каждого материала. При превышении предельных значений напряжений линейная зависимость между нагрузками и деформациями не наблюдается.
***
Материалы раздела «Сопротивление материалов»:
- Основные понятия и определения
- Растяжение и сжатие
- Смятие. Контактные напряжения
- Деформация сдвига (среза)
- Деформация кручения
- Деформация изгиба
Метод сечений. Напряжения
Правильные ответы на вопросы Теста № 3
№ вопроса | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Правильный вариант ответа | 1 | 2 | 1 | 2 | 3 | 2 | 1 | 3 | 1 | 3 |
Источник
Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635— 1703).
Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формулируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению. Математически закон Гука можно записать в виде равенства
Коэффициент пропорциональности Е характеризует жесткость материала, то есть его способность сопротивляться упругим деформациям растяжения или сжатия, и называется модулем продольной упругости или модулем упругости первого рода.
Модуль упругости и напряжение выражаются в одинаковых единицах: [Е = [ст]/[е] = Па.
В таблице 2.1 приведены значения ?для некоторых материалов.
Таблица 2.1
Материал | Е, МПа |
Чугун | (1,5…1,6) ТО5 |
Сталь | (1,96…2,16) ТО5 |
Медь | (1,0…1,3)105 |
Сплавы алюминия | (0,69…0,71) ТО5 |
Дерево (вдоль волокон) | (0,1—.0,16) -105 |
Текстолит | (0,06…0,1)-105 |
Капрон | (0,01…0,02) ТО5 |
Если в формулу закона Гука подставим выражения а = N/A, е = А///, то получим
Произведение ЕЛ, стоящее в знаменателе, называется жесткостью сечения при растяжении и сжатии; оно характеризует одновременно физикомеханические свойства материала и геометрические размеры поперечного сечения бруса. Соответственно, данная формула читается так: абсолютное удлинение или укорочение прямо пропорционально продольной силе и длине и обратно пропорционально жесткости сечения бруса.
Приведенные выше формулы закона Гука применимы только для брусьев или их участков постоянного поперечного сечения, изготовленных из одного материала и при постоянной продольной силе.
Для бруса, имеющего несколько участков, отличающихся материалом, размерами поперечного сечения, продольной силой, изменение длины всего бруса равно алгебраической сумме удлинений и укорочений отдельных участков:
Пример 2.2
На стальной ступенчатый брус действуют силы F= 40 кН и R = 60 кН. Площади поперечных сечений равны Ах = 800 мм2, Л2 = 1600 мм2. Длины участков указаны на рис. 2.4; а = 0,2 м. Определить изменение длины бруса двумя способами:
- 1) с помощью эпюры продольных сил;
- 2) с помощью принципа независимости действия сил.
Принять Е= 2-1011 Па.
Рис. 2.4
Решение.
1-й способ. Разобьем брус на участки и применяя метод сечений, определим значения продольных сил на каждом из них: Nx — N2 — —40 кН (сжатие), N3 = 20 кН (растяжение). Строим эпюру продольных сил.
Для бруса, состоящего из нескольких участков, А/ = A/i + Д/2 +Д/з, где по закону Гука
. Изменение длины первого участка
; аналогично
— изменения длин второго и третьего участков.
Следовательно,
Подставив числовые значения с учетом знаков продольных сил, получим
Произведя вычисления, получим Д/= —0,15 — 0,025 + 0,025 = —0,15 мм.
Следовательно, брус укоротится на 0,15 мм.
2-й способ. Применим принцип независимости действия сил. Изменение длины бруса Д/ будет складываться из укорочения AlF всего бруса под действием силы F и удлинения ДlR третьего участка под действием силы R: Д/ = AlF + + AlR. Вычислим каждое из этих слагаемых.
А1Р = -F- 3а/{ЕА) — F(a + 2а)/(ЕА2)’, подставляя числовые значения, получим А1Р= —0,225 мм.
Аналогично находим AlR = R ?2а/{ЕА2); AlR = 0,075 мм.
Отсюда Д/ — —0,225 + 0,075 = —0,15 мм.
Решая задачу двумя способами, мы получили один и тот же результат, что свидетельствует о правильности решения.
Источник
Внутренние усилия при растяжении-сжатии.
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Напряжения при растяжении-сжатии.
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Деформации при растяжении-сжатии.
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l
Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Таблица 1
Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Таблица 2
Коэффициент Пуассона.
Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Механические свойства материалов.
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость – свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Расчеты на прочность и жесткость при растяжении и сжатии.
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.
Расчеты на прочность при растяжении и сжатии.
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Расчет на жесткость при растяжении и сжатии.
Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Источник