Закон гука при одноосном растяжений сжатий

Закон гука при одноосном растяжений сжатий thumbnail

Физика, 10 класс

Урок 9. Закон Гука

Перечень вопросов, рассматриваемых на этом уроке

1.Закона Гука.

2.Модели видов деформаций.

3. Вычисление и измерение силы упругости, жёсткости и удлинение пружины.

Глоссарий по теме

Сила упругости – это сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение.

Деформация – изменение формы или размеров тела, происходящее из-за неодинакового смещения различных частей одного и того же тела в результате воздействия другого тела. Виды деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

Закон Гука – сила упругости, возникающая при деформации тела (растяжение или сжатие пружины), пропорциональна удлинению тела (пружины), и направлена в сторону противоположную направлению перемещений частиц тела

Основная и дополнительная литература по теме:

Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112

Рымкевич А.П. Сборник задач по физике. 10-11класс.- М.:Дрофа,2009. Стр 28-29

ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.

Основное содержание урока

В окружающем нас мире мы наблюдаем, как различные силы заставляют тела двигаться, делать прыжки, перемещаться, взаимодействовать.

Однако можно также наблюдать как происходят разрушения, так называемые деформации, различных сооружений: мостов, домов, разнообразных машин.

Что необходимо знать инженеру конструктору, строителю, чтобы строить надёжные сооружения: дома, мосты, машины?

Почему деформации различны, какие виды деформации могут быть у конкретных тел? Почему одни тела после деформации могут восстановиться, а другие нет? От чего зависит и можно ли рассчитать величину этих деформаций?

Деформация — это изменение формы или размеров тела, в результате воздействия на него другого тела.

Почему деформации не одинаковы у различных тел, если мы их, к примеру, сжимаем? Давайте вспомним что мы знаем о строении вещества.

Все вещества состоят из частиц. Между этими частицами существуют силы взаимодействия- эти силы электромагнитной природы. Эти силы в зависимости от расстояний между частицами проявляются, то как силы притяжения, то как силы отталкивания.

Сила упругости – сила, возникающая при деформации любых тел, а также при сжатии жидкостей и газов. Она противодействует изменению формы тел.

Мы можем наблюдать несколько видов деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

При деформации растяжения межмолекулярные расстояния увеличиваются. Такую деформацию испытывают струны в музыкальных инструментах, различные нити, тросы, буксирные тросы.

При деформации сжатия межмолекулярные расстояния уменьшаются. Под такой деформацией находятся стены, фундаменты сооружений и зданий.

При деформации изгиба происходят неординарные изменения, одни межмолекулярные слои увеличиваются, а другие уменьшаются. Такие деформации испытывают перекрытия в зданиях и мостах.

При кручении – происходят повороты одних молекулярных слоёв относительно других. Эту деформацию испытывают: валы, витки цилиндрических пружин, столярный бур, свёрла по металлу, валы при бурении нефтяных скважин. Деформация среза тоже является разновидностью деформации сдвига.

Первое научное исследование упругого растяжения и сжатия вещества провёл английский учёный Роберт Гук.

Роберт Гук установил, что при малых деформациях растяжения или сжатия тела абсолютное удлинение тела прямо пропорционально деформирующей силе.

Закон гука при одноосном растяжений сжатий

F упр = k ·Δℓ = k · Iℓ−ℓ0I закон Гука.

k− коэффициент пропорциональности, жёсткость тела.

ℓ0 — начальная длина.

ℓ — конечная длина после деформации.

Δℓ = I ℓ−ℓ₀ I- абсолютное удлинение пружины.

Закон гука при одноосном растяжений сжатий — единица измерения жёсткости в системе СИ.

При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе, а слишком большие деформации разрушают тело.

Для расчёта движения тел под действием силы упругости, нужно учитывать направление этой силы. Если принять за начало отсчёта крайнюю точку недеформированного тела, то абсолютное удлинение тела можно характеризовать конечной координатой деформированного тела. При растяжении и сжатии сила упругости направлена противоположно смещению его конца.

Закон Гука можно записать для проекции силы упругости на выбранную координатную ось в виде:

F упр x = − kx — закона Гука.

k – коэффициент пропорциональности, жёсткость тела.

x = Δℓ = ℓ−ℓ0 удлинение тела (пружины, резины, шнура, нити….)

Fупр x = − kx

Закон Гука:

Fупр = k·Δℓ = k · Iℓ−ℓ0I

Графиком зависимости модуля силы упругости от абсолютного удлинения тела является прямая, угол наклона которой к оси абсцисс зависит от коэффициента жёсткости k. Если прямая идёт круче к оси силы упругости, то коэффициент жёсткости этого тела больше, если же уклон прямой идёт ближе к оси абсолютного удлинения, следует понимать, что жёсткость тела меньше.

Закон гука при одноосном растяжений сжатий

График, зависимости проекции силы упругости на ось ОХ, того же тела от значения х.

Закон гука при одноосном растяжений сжатий

Необходимо помнить, что закон Гука хорошо выполняется при только при малых деформациях. При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе.

Разбор тренировочных заданий

1. По результатам исследования построен график зависимости модуля силы упругости пружины от её деформации. Чему равна жёсткость пружины? Каким будет удлинение этой пружины при подвешивании груза массой 2кг?

Закон гука при одноосном растяжений сжатий

Решение: По графику идёт линейная зависимость модуля силы упругости и удлинение пружины. Зависимость физических величин по Закону Гука:

F упр x = − kx (1)

Fупр =k·Δℓ = k · Iℓ−ℓ0I (2)

Из формулы (1) выражаем:

Закон гука при одноосном растяжений сжатий

Зная что Fт = mg = 20 Н, Fт = Fупр= k·Δℓ следовательно

Закон гука при одноосном растяжений сжатий

Ответ: жёсткость пружины равна 200 Н/м, удлинение пружины равно 0,1м.

2. К системе из кубика массой 1 кг и двух пружин приложена постоянная горизонтальная сила. Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Удлинение первой пружины 0,05 м. Жёсткость первой пружины равна 200 Н/м. Удлинение второй пружины 0,25 м.

Закон гука при одноосном растяжений сжатий

  1. Чему равна приложенная к системе сила?
  2. Чему равна жёсткость второй пружины?
  3. Во сколько раз жёсткость второй пружины меньше чем первой?

Решение:

1. По условию задачи система находится в покое. Зная жёсткость и удлинение пружины найдём силу, которая уравновешивает приложенную постоянную горизонтальную силу.

F = F упр =k1·Δℓ1= 200 Н/м·0,05 м = 10 Н

2. Жёсткость второй пружины:

Закон гука при одноосном растяжений сжатий

3. k1/ k2 = 200/40 = 5

Ответ: F=10 Н; k2 = 40 Н/м; k1/k2 = 5.

Источник

Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635— 1703).

Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формулируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению. Математически закон Гука можно записать в виде равенства

Закон гука при одноосном растяжений сжатий

Коэффициент пропорциональности Е характеризует жесткость материала, то есть его способность сопротивляться упругим деформациям растяжения или сжатия, и называется модулем продольной упругости или модулем упругости первого рода.

Модуль упругости и напряжение выражаются в одинаковых единицах: = [ст]/[е] = Па.

В таблице 2.1 приведены значения ?для некоторых материалов.

Читайте также:  Лекарственные препараты от растяжения связок

Таблица 2.1

Материал

Е, МПа

Чугун

(1,5…1,6) ТО5

Сталь

(1,96…2,16) ТО5

Медь

(1,0…1,3)105

Сплавы алюминия

(0,69…0,71) ТО5

Дерево (вдоль волокон)

(0,1—.0,16) -105

Текстолит

(0,06…0,1)-105

Капрон

(0,01…0,02) ТО5

Если в формулу закона Гука подставим выражения а = N/A, е = А///, то получим

Закон гука при одноосном растяжений сжатий

Произведение ЕЛ, стоящее в знаменателе, называется жесткостью сечения при растяжении и сжатии; оно характеризует одновременно физикомеханические свойства материала и геометрические размеры поперечного сечения бруса. Соответственно, данная формула читается так: абсолютное удлинение или укорочение прямо пропорционально продольной силе и длине и обратно пропорционально жесткости сечения бруса.

Приведенные выше формулы закона Гука применимы только для брусьев или их участков постоянного поперечного сечения, изготовленных из одного материала и при постоянной продольной силе.

Для бруса, имеющего несколько участков, отличающихся материалом, размерами поперечного сечения, продольной силой, изменение длины всего бруса равно алгебраической сумме удлинений и укорочений отдельных участков:
Закон гука при одноосном растяжений сжатий

Пример 2.2

На стальной ступенчатый брус действуют силы F= 40 кН и R = 60 кН. Площади поперечных сечений равны Ах = 800 мм2, Л2 = 1600 мм2. Длины участков указаны на рис. 2.4; а = 0,2 м. Определить изменение длины бруса двумя способами:

  • 1) с помощью эпюры продольных сил;
  • 2) с помощью принципа независимости действия сил.

Принять Е= 2-1011 Па.

Закон гука при одноосном растяжений сжатий

Рис. 2.4

Решение.

1-й способ. Разобьем брус на участки и применяя метод сечений, определим значения продольных сил на каждом из них: Nx — N2 — —40 кН (сжатие), N3 = 20 кН (растяжение). Строим эпюру продольных сил.

Для бруса, состоящего из нескольких участков, А/ = A/i + Д/2 +Д/з, где по закону Гука
Закон гука при одноосном растяжений сжатий. Изменение длины первого участка
Закон гука при одноосном растяжений сжатий; аналогично
Закон гука при одноосном растяжений сжатий— изменения длин второго и третьего участков.

Следовательно,

Закон гука при одноосном растяжений сжатий

Подставив числовые значения с учетом знаков продольных сил, получим

Закон гука при одноосном растяжений сжатий

Произведя вычисления, получим Д/= —0,15 — 0,025 + 0,025 = —0,15 мм.

Следовательно, брус укоротится на 0,15 мм.

2-й способ. Применим принцип независимости действия сил. Изменение длины бруса Д/ будет складываться из укорочения AlF всего бруса под действием силы F и удлинения ДlR третьего участка под действием силы R: Д/ = AlF + + AlR. Вычислим каждое из этих слагаемых.

А1Р = -F- 3а/{ЕА) — F(a + 2а)/(ЕА2)’, подставляя числовые значения, получим А1Р= —0,225 мм.

Аналогично находим AlR = R ?2а/{ЕА2); AlR = 0,075 мм.

Отсюда Д/ — —0,225 + 0,075 = —0,15 мм.

Решая задачу двумя способами, мы получили один и тот же результат, что свидетельствует о правильности решения.

Источник

Сила – это количественная мера взаимодействия тел. В рамках классической механики мы имеем дело со следующими видами сил: силами инерции, гравитационными, электростатическими, упругими, силами трения и сопротивления. Объектами воздействия классических сил являются м.т., с.м.т., твердое тело, сплошная среда (твердое вещество, газ, жидкость).

Силы упругости, силы трения и сопротивления определяются взаимодействиеями между молекулами вещества и имеют в своей основе электромагнитное происхождение и действуют в масштабах межмолекулярных расстояний.

Закон Гука

Закон Гука применим к деформируемым объектам, возвращающимся к исходному состоянию после снятия силы. Например, для растягивающейся пружины справедлива формула силы

F = kx, (1)

где F – действующая сила,
k – коэффициент пропорциональности, или жесткость пружины,
x – растяжение пружины.

Кроме линейных объектов типа пружины, на практике встречается множество других типов деформируемых объектов, по отношению к которым можно применять закон Гука. Только в этом случае коэффициент k может быть тензором 2–го порядка соответствующей размерности. Движение при этом обратимо.

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил. Если после прекращения действия сил тело возвращается в прежнее состояние (деформация исчезает), то деформация называется упругой. Деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело – пластическими. Обычно деформация бывает упругой, если ее величина не превосходит определенного предела (предела упругости). Внутри такого деформированного тела возникают силы, называемые силами упругости.

Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба, кручения и сдвига.

Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела.

Природа упругих сил электрическая. При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации. Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена английским физиком Гуком.

Закон Гука для одностороннего растяжения (сжатия) формулируют так: сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела. Опытным путем установлено, что при малых деформациях упругая сила пропорциональна величине деформации. Например, при растяжении пружины на величину Δlупругая сила F вдоль оси пружины будет равна

F = –kΔl, (2)

где F – сила упругости;
Δl – удлинение (деформация) тела;
k – коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ – ньютон на метр (Н/м).

Знак «–» в формуле (2) указывает, что направление силы противоположно направлению деформации (при растяжении пружины сила F сжимает ее и наоборот, при сжатии растягивает).

Упругую силу принято характеризовать не ее непосредственной величиной F, а отношением F к площади поверхности S, через которую она действует. Это отношение называют напряжением. В случае, когда сила F перпендикулярна поверхности S, напряжение называют нормальным. Его обозначают σ. Напряжение измеряют в паскалях [Па]. (1 Па = 1 Н / 1 м2).

Деформацию твердых тел чаще характеризуют не абсолютным изменением длины Δl, а относительным удлинением ε (3)

где l – длина тела. ε – безразмерная величина.

При малых деформациях относительное удлинение пропорционально нормальному напряжению. Эту связь деформации и напряжения также называют законом Гука. Его принято записывать в следующей форме (4):

Коэффициент пропорциональности Е в законе Гука характеризует упругость данного материала и называется модулем (продольной) упругости (модулем Юнга). Модуль Юнга численно равен такому нормальному напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза (если бы для такой большой деформации выполнялся закон Гука). Модуль упругости выражается в паскалях.

Диаграмма растяжения

Используя формулу (3), (4), по экспериментальным значениям относительного удлинения ε можно вычислить соответствующие им значения нормального напряжения σ, возникающего в деформированном теле, и построить график зависимости σ от ε. Этот график называют диаграммой растяжения. Подобный график для металлического образца изображен на рис. 1.

Рис. 1. График деформации реального тела.

Читайте также:  Как проверить велосипедную цепь на растяжение штангелем

На участке 0–1 график имеет вид прямой, проходящей через начало координат. Это значит, что до определенного значения напряжения σп деформация является упругой и выполняется закон Гука, т. е. нормальное напряжение пропорционально относительному удлинению. Максимальное значение нормального напряжения σп, при котором еще выполняется закон Гука, называют пределом пропорциональности.

При дальнейшем увеличении нагрузки зависимость напряжения от относительного удлинения становится нелинейной (участок 1–2), хотя упругие свойства тела еще сохраняются. Максимальное значение нормального напряжения, при котором еще не возникает остаточная деформация, называют пределом упругости. (Предел упругости лишь на сотые доли процента превышает предел пропорциональности.) Увеличение нагрузки выше предела упругости (участок 2–3) приводит к тому, что деформация становится остаточной.

Затем образец начинает удлиняться практически при постоянном напряжении (участок 3–4 графика). Это явление называют текучестью материала. Нормальное напряжение σт, при котором остаточная деформация достигает заданного значения, называют пределом текучести.

При напряжениях, превышающих предел текучести, упругие свойства тела в известной мере восстанавливаются, и оно вновь начинает сопротивляться деформации (участок 4–5 графика). Максимальное значение нормального напряжения σпр, при превышении которого происходит разрыв образца, называют пределом прочности.

Таблица 1. Пример таблицы модулей упругости металлов

—————————————————————————————-

Ссылка на мою статью Как написать формулы в статье на Дзен?

Мои странички на Дзен: https://zen.yandex.ru/id/5e036c95fc69ab00aecfe6e9

Если хотите узнать, что обозначает слово или словосочетание, в ОПЕРЕ выделите это слово(сочетание), нажмите правую клавишу мыши и выберите «Искать в …», далее — «Yandex». Если это текстовая ссылка – выделите ее, нажмите правую клавишу мыши, выберите «перейти …». Все! О-ля-ля!

Если вам понравилась статья, то поставьте «лайк» и подпишитесь на канал! Если не понравилась – все равно комментируйте и подписывайтесь. Этим вы поможете каналу. И делитесь ссылками в ваших соцсетях!

Источник

Напряжения и деформации при растяжении и сжатии связаны между собой линейной зависимостью, которая называется законом Гука, по имени английского физика Р. Гука (1653-1703 г.г.), установившего этот закон.
Сформулировать закон Гука можно так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.

Математически эта зависимость записывается так:

σ = E ε.

Здесь Е – коэффициент пропорциональности, который характеризует жесткость материала бруса, т. е. его способность сопротивляться деформации; его называют модулем продольной упругости, или модулем упругости первого рода.
Модуль упругости, как и напряжение, выражаются в паскалях (Па).

Значения Е для различных материалов устанавливаются экспериментально-опытным путем, и их величину можно найти в соответствующих справочниках.
Так, для стали Е = (1,96.…2,16) х 105 МПа, для меди Е = (1,00…1,30) х 105 МПа и т. д.

Следует оговориться, что закон Гука справедлив лишь в определенных пределах нагружения.
Если в формулу закона Гука подставить полученные ранее значения относительного удлинения и напряжения: ε = Δl / l , σ = N / А, то можно получить следующую зависимость:

Δl = N l / (E А).

Произведение модуля упругости на площадь сечения Е×А, стоящее в знаменателе, называют жесткостью сечения при растяжении и сжатии; оно характеризует одновременно и физико-механические свойства материала бруса и геометрические размеры поперечного сечения этого бруса.

Приведенную выше формулу можно читать так: абсолютное удлинение или укорочение бруса прямо пропорционально продольной силе и длине бруса, и обратно пропорционально жесткости сечения бруса.
Выражение Е А / l называют жесткостью бруса при растяжении и сжатии.

Приведенные выше формулы закона Гука справедливы лишь для брусьев и их участков, имеющих постоянное поперечное сечение, изготовленных из одного материала и при постоянной силе. Для бруса, имеющего несколько участков, отличающихся материалом, размерами сечения, продольной силой, изменение длины всего бруса определяется, как алгебраическая сумма удлинений или укорочений отдельных участков:

Δl = Σ (Δli)

Деформация

Деформация (англ. deformation) — это изменение формы и размеров тела (или части тела) под действием внешних сил, при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела. При увеличении напряжения деформация может закончиться разрушением. Способность материалов сопротивляться деформации и разрушению под воздейстивем различного вида нагрузок характеризуется механическими свойствами этих материалов.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу напряжений. Одни процессы деформации связаны с преобладающим действием касательной составляющей напряжения, другие — с действием его нормальной составляющей.

Виды деформации

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

  • Деформация растяжения;
  • Деформация сжатия;
  • Деформация сдвига (или среза);
  • Деформация при кручении;
  • Деформация при изгибе.

К простейшим видам деформации относятся: деформация растяжения, деформация сжатия, деформация сдвига. Выделяют также следующие виды деформации: деформация всестороннего сжатия, кручения, изгиба, которые представляют собой различные комбинации простейших видов деформации (сдвиг, сжатие, растяжение), так как сила приложенная к телу, подвергаемому деформации, обычно не перпендикулярна его поверхности, а направлена под углом, что вызывает как нормальные, так и касательные напряжения. Изучением видов деформации занимаются такие науки, как физика твёрдого тела, материаловедение, кристаллография.

В твёрдых телах, в частности — металлах, выделяют два основных вида деформаций — упругую и пластическую деформацию, физическая сущность которых различна.

Сдвигом называют такой вид деформации, когда в поперечных сечениях возникают только перерезывающие силы. Такое напряженное состояние соответствует действию на стержень двух равных противоположно направленных и бесконечно близко расположенных поперечных сил (рис. 2.13, а, б), вызывающих срез по плоскости, расположенной между силами.

Рис. 2.13. Деформация и напряжения при сдвиге

Срезу предшествует деформация – искажение прямого угла между двумя взаимно-перпендикулярными линиями. При этом на гранях выделенного элемента (рис. 2.13, в) возникают касательные напряжения. Величина смещения граней называется абсолютным сдвигом. Значение абсолютного сдвига зависит от расстояния h между плоскостями действия сил F. Более полно деформацию сдвига характеризует угол , на который изменяются прямые углы элемента – относительный сдвиг:

. (2.27)

Используя ранее рассмотренный метод сечений, легко убедиться, что на боковых гранях выделенного элемента возникают только перерезывающие силыQ=F, являющиеся равнодействующими касательных напряжений:

. (2.28)

Принимая во внимание, что касательные напряжения распределены равномерно по поперечному сечению А, их значение определяется соотношением:

. (2.29)

Экспериментально установлено, что в пределах упругих деформаций величина касательных напряжений пропорциональна относительному сдвигу (закон Гука при сдвиге):

, (2.30)

где G – модуль упругости при сдвиге (модуль упругости второго рода).

Между модулями продольной упругости и сдвига существует взаимосвязь

,

где – коэффициент Пуассона.

Приближенные значения модуля упругости при сдвиге, МПа: сталь – 0,8·105; чугун – 0,45·105; медь – 0,4·104; алюминий – 0,26·105; резина – 4.

2.4.1.1. Расчеты на прочность при сдвиге

Читайте также:  К какому врачу обратиться если есть растяжение связок

Чистый сдвиг в реальных конструкциях реализовать крайне сложно, так как вследствие деформации соединяемых элементов происходит дополнительный изгиб стержня, даже при сравнительно небольшом расстоянии между плоскостями действия сил. Однако в ряде конструкций нормальные напряжения в сечениях малы и ими можно пренебречь. В этом случае условие прочностной надежности детали имеет вид:

, (2.31)

где – допускаемые напряжение на срез, которые обычно назначают в зависимости от величины допускаемого напряжения при растяжении:

– для пластичных материалов при статической нагрузке=(0,5…0,6) ;

– для хрупких – =(0,7 … 1,0) .

2.4.1.2. Расчеты на жесткость при сдвиге

Они сводятся к ограничению упругих деформаций. Решая совместно выражение (2.27)–(2.30), определяют величину абсолютного сдвига:

, (2.32)

где – жесткость при сдвиге.

Кручение

2.4.2.1. Построение эпюр крутящих моментов

2.4.2.2. Деформации при кручении

2.4.2.3. Напряжения при кручении

2.4.2.4. Геометрические характеристики сечений

2.4.2.5. Расчеты на прочность и жесткость при кручении

Кручением называют такой вид деформации, когда в поперечных сечениях возникает единственный силовой фактор – крутящий момент.

Деформация кручения происходит при нагружении бруса парами сил, плоскости действия которых перпендикулярны к его продольной оси.

2.4.2.1. Построение эпюр крутящих моментов

Для определения напряжений и деформаций бруса строят эпюру крутящих моментов, показывающую распределение крутящих моментов по длине бруса. Применив метод сечений и рассмотрев в равновесии любую часть, станет очевидно, что момент внутренних сил упругости (крутящий момент ) должен уравновесить действие внешних (вращающих) моментов на рассматриваемую часть бруса. Принято момент считать положительным, если наблюдатель смотрит на рассматриваемое сечение со стороны внешней нормали и видит вращающий момент Т, направленным против хода движения часовой стрелки. При противоположном направлении моменту приписывается знак минус.

Например, условие равновесия для левой части бруса имеет вид (рис. 2.14):

– в сечении А-А:

; ,

– в сечении Б-Б:

.

Границами участков при построении эпюры являются плоскости действия вращающих моментов .

Рис. 2.14. Расчетная схема бруса (вала) при кручении

2.4.2.2. Деформации при кручении

Если на боковую поверхность стержня круглого поперечного сечения нанести сетку (рис. 2.15, а) из равноотстоящих окружностей и образующих, а к свободным концам приложить пары сил с моментами Т в плоскостях, перпендикулярных к оси стержня, то при малой деформации (рис. 2.15, б) можно обнаружить:

Рис. 2.15. Схема деформации при кручении

· образующие цилиндра превращаются в винтовые линии большого шага;

· квадраты, образованные сеткой, превращаются в ромбы, т.е. происходит сдвиг поперечных сечений;

· сечения, круглые и плоские до деформации, сохраняют свою форму и после деформации;

· расстояние между поперечными сечениями практически не изменяется;

· происходит поворот одного сечения относительно другого на некоторый угол.

На основании этих наблюдений теория кручения бруса основана на следующих допущениях:

· поперечные сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к оси и после деформации;

· равноотстоящие поперечные сечения поворачиваются относительно друг друга на равные углы;

· радиусы поперечных сечений в процессе деформации не искривляются;

· в поперечных сечениях возникают только касательные напряжения. Нормальные напряжения малы. Длину бруса можно считать неизменной;

· материал бруса при деформации подчиняется закону Гука при сдвиге: .

В соответствии с этими гипотезами кручение стержня круглого поперечного сечения представляют как результат сдвигов, вызванных взаимным поворотом сечений.

На стержне круглого поперечного сечения радиусом r, заделанным одним концом и нагруженным вращающим моментом Т на другом конце (рис. 2.16, а), обозначим на боковой поверхности образующую АD, которая под действием момента займет положение АD1. На расстоянии Z от заделки выделим элемент длиной dZ. Левый торец этого элемента в результате кручения повернется на угол , а правый – на угол (). Образующая ВС элемента займет положениеВ1С1, отклонившись от исходного положения на угол . В силу малости этого угла

.

Отношениепредставляет угол закручивания единицы длины стержня и называется относительным углом закручивания. Тогда

. (2.33)

Рис. 2.16. Расчетная схема определения напряжений
при кручении стержня круглого поперечного сечения

2.4.2.3. Напряжения при кручении

Принимая во внимание (2.33), закон Гука при кручении можно описать выражением:

. (2.34)

В силу гипотезы, что радиусы круглых поперечных сечений не искривляются, касательные напряжения сдвига в окрестностях любой точки тела, находящейся на расстоянии от центра (рис. 2.16, б), равны произведению

, (2.35)

т.е. пропорциональны расстоянию ее до оси.

Значение относительного угла закручивания по формуле (2.35) может быть найдено из условия, что элементарная окружная сила () на элементарной площадке размером dA, расположенной на расстоянии от оси бруса, создает относительно оси элементарный момент (рис. 2.16, б):

.

Сумма элементарных моментов, действующих по всему поперечному сечению А, равна крутящему моменту МZ. Считая, что :

.

Интеграл представляет собой чисто геометрическую характеристику и носит название полярного момента инерции сечения.

Таким образом,

, (2.36)

откуда, угол закручивания единицы длины бруса

. (2.37)

Произведение называется жесткостью сечения бруса при кручении.

Полный угол закручивания, рад:

. (2.38)

Если крутящий момент и момент инерции сечения постоянны по длине стержня, то полный угол закручивания

. (2.39)

Решив совместно выражения (2.35) и (2.36), получим уравнение

, (2.40)

из которого следует, что напряжение в точке поперечного сечения прямо пропорционально расстоянию до центра сечения. При . Наибольшие напряжения возникают у наружной поверхности: .

Отношение полярного момента инерции к наибольшему радиусу r называется моментом сопротивления сечения кручению , мм3:

. (2.41)

Условие прочности принимает вид

Закон Гука при сдвиге

Материалы о физике / Основы сопротивления материалов / Закон Гука при сдвиге

Для определения зависимости между нагрузкой и деформацией при сдвиге проводят испытания материала на кручение. При данном испытании строится диаграмма сдвига (график зависимости между касательным напряжением и относительным сдвигом). Более подробное описание испытания на кручение образцов цилиндрической формы приведено в методических указаниях к лабораторным работам

Для пластичных материалов диаграмма сдвига аналогична диаграмме растяжения (рис. 4.5).

Рис. 4.5

При рассмотрении деформации образца в пределах упругости видна линейная зависимость между относительным сдвигом и касательным напряжением.

(4.23)

где — коэффициент пропорциональности, который называется модулем упругости при сдвиге или модулем упругости второго рода.

Зависимость (4.23) выражает закон Гука при сдвиге.

Между величинами модуля продольной упругости и модуля упругости при сдвиге для одного и того же материала существует зависимость

(4.24)

При значении коэффициента Пуассона получим, что

Запишем выражение для перемещения одной грани относительно другой (абсолютного сдвига (рис. 4.1)) при чистом сдвиге. Обозначая площадь грани , равнодействующую сдвигающую силу и расстояние между сдвигаемыми гранями (рис. 4.1), получим

(4.25)

Формула (4.25) выражает закон Гука для абсолютного сдвига.

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Источник