Задача расчеты на прочность при растяжении и сжатии стержня
Расчеты на прочность стержней и других элементов конструкций составляют одну из основных задач сопротивления материалов. Целью этих расчетов является обеспечение надежной и безопасной работы элементов конструкций и сооружений в течение всего периода эксплуатации при минимальном расходе материала.
Расчеты на прочность производятся на основе определенных методов, позволяющих сформулировать условия прочности элементов конструкций при различных воздействиях.
Основным методом расчета на прочность элементов строительных конструкций является метод предельных состояний. В этом методе значения всех нагрузок, действующих на конструкцию в течение всего периода ее эксплуатации, разделяются на нормативные и расчетные. Нормативные значения нагрузок характеризуют их действие на конструкцию при нормальных условиях ее эксплуатации. Это собственный вес конструкции, атмосферные воздействия снега, ветра, вес технологического оборудования, людей и т.п. Нормативные значения нагрузок приведены в строительных нормах и правилах (СНиП).
Расчетные значения нагрузок Рр определяются путем умножения нормативных значений Рн на коэффициенты надежности по нагрузке уу-:
С помощью коэффициентов производится учет возможного отклонения нагрузок от их нормативных значений в неблагоприятную для работы конструкции сторону. Значения коэффициентов надежности по нагрузке устанавливаются нормами проектирования с учетом различных факторов в пределах от 1,05 до 1,4.
В качестве основного параметра, характеризующего сопротивление материала конструкции различным воздействиям, принимается нормативное сопротивление RH, соответствующее значению предела текучести для пластичных материалов или временного сопротивления для хрупких материалов. Последние определяются с помощью механических испытаний.
При оценке прочности элементов конструкций величина нормативного сопротивления материала должна быть уменьшена за счет различных неблагоприятных факторов (например, ухудшения качества материала). Для этого вводится расчетное сопротивление, которое определяется по формуле
где ут — коэффициент надежности по материалу, изменяющийся в различных пределах в зависимости от физико-механических свойств материала. Например, для стали он изменяется в пределах от 1,025 до 1,15.
Кроме того, в условие прочности вводится коэффициент условий работы ус, с помощью которого учитываются конструктивные особенности и виды нагружения сооружений. Коэффициент ус может быть больше или меньше единицы.
Величины нормативных и расчетных сопротивлений и значения коэффициентов ур ут и ус приведены в соответствующих разделах строительных норм и правил (СНиП).
Условие прочности стержня при растяжении и сжатии, согласно методу предельных состояний, имеет следующий вид:
где N — продольная сила в стержне, вычисленная от действия расчетных нагрузок; F — площадь поперечного сечения стержня.
Условие (3.27) обычно ставится для сечения стержня, в котором действуют наибольшие нормальные напряжения.
С помощью условия прочности (3.27) можно выполнить подбор сечения стержня, т.е. определить размеры поперечного сечения или установить номер прокатного профиля по сортаменту, а также определить грузоподъемность стержня или стержневой системы. Подбор сечения стержня выполняется по формуле
При расчете на прочность элементов машиностроительных конструкций используется метод расчета по допускаемым напряжениям. В этом методе внутренние усилия и напряжения в элементах конструкции вычисляются от действия нормативных нагрузок, допускаемых при нормальной эксплуатации данной конструкции. Сопротивление материала различным воздействиям характеризуется допускаемым напряжением [а], которое определяется по формулам: для хрупких материалов
для пластичных материалов
где пви пт — коэффициенты запаса прочности по отношению к временному сопротивлению ов и пределу текучести от.
Коэффициенты запаса принимаются с учетом целого ряда факторов, таких как физико-механические свойства материала, условия работы конструкции, характер действия нагрузок и т.п.
Величины допускаемых напряжений [о] для различных материалов приведены в соответствующих нормативных документах.
Условие прочности стержня при растяжении и сжатии по методу допускаемых напряжений имеет следующий вид:
С помощью условия (3.31) можно также решать задачи подбора сечения стержня и определения грузоподъемности.
Пример 3.9. Жесткая балка АВ нагружена сосредоточенной силой и поддерживается с помощью стержня CD (рис. 3.24). Подберем сечение стержня в виде двух стальных прокатных равнобоких уголков и в виде двух стальных тяг круглого сечения. В расчетах примем нормативное значение силы Рн = 100 кН, yf= 1,4, ус = 1,0, R = 210 МПа = 21 кН/см2.
Определим расчетное значение силы:
Определим с помощью уравнения равновесия расчетное значение продольной силы в стержне CD:
Вычислим значение требуемой по условию прочности площади поперечного сечения стержня:
В первом варианте принимаем по сортаменту сечение стержня в виде двух равнобоких уголков (рис. 3.25, а) _|1_56х56х5. Площадь поперечного сечения стержня равна F= 2 • 5,41 = 10,82 см2.
Во втором варианте определяем требуемый диаметр сечения каждого стержня (рис. 3.25, б):
Рис. 3.24
Рис. 3.25
Округлив в большую сторону, примем D = 2,6 см.
Определим для первого варианта сечения значения напряжений в поперечном сечении стержня:
Прочность стержня обеспечена с небольшим запасом.
Пример 3.10. Стержневая система состоит из жесткой балки АВ, имеющей шарнирно-неподвижную опору С, и двух стержней BD и АЕ, поддерживающих балку (рис. 3.26). К балке приложена сила Р, нормативное значение которой равно 300 кН. Определим усилия в стержнях и подберем их сечения в виде двух стальных прокатных равнобоких уголков. В расчетах примем соотношение между площадями поперечных сечений стержней F2/F] = 1,3, yf = 1,2, ус = 1,0, R = 210 МПа = 21 кН/см2.
Расчетное значение силы Р равно Рр = 300 • 1,2 = 360 кН.
Данная стержневая система является статически неопределимой, поскольку для определения четырех неизвестных величин /V,, N2, Rcи Нсможно составить только три независимых уравнения статики. Используем уравнение равновесия относительно усилий в стержнях /V, и N2. Учитывая, что г, = 3 sin 30° = 1,5 м, получим
Для получения дополнительного уравнения относительно N{ и N2 рассмотрим схему деформации системы. При повороте жесткой балки АВ на малый угол у (рис. 3.27) удлинения стержней составят:
Рис. 3.26
Рис. 3.27
Определим из подобия треугольников АА’С и В В’ С соотношение между величинами А/, и Д/2:
Выражаем величины удлинений стержней через действующие в них усилия и составляем дополнительное уравнение относительно N, и N2:
где /j = 3/cos 30° = 3,46 ми /2 = 1,5 м — длины стержней.
Подставляем соотношение между усилиями в уравнение равновесия и определяем величины усилий в стержнях:
Определяем требуемые по условию прочности площади поперечных сечений стержней:
Проверим выполнение принятого в начале расчета соотношения между площадями F{ и F2:
Поскольку принятое соотношение не выполняется, при подборе сечений стержней надо увеличить требуемую площадь поперечного сечения первого стержня и принять ее равной
Принимаем по сортаменту сечения стержней в виде двух стальных прокатных равнобоких уголков, определяем действующие в стержнях напряжения и проверяем их прочность. Стержень BD (2|_75х75х8)
Стержень (2L 110x110x7)
Прочность стержней обеспечена.
Пример 3.11. Для данной системы (рис. 3.28) определим величину допустимой силы Р из условий прочности стержней Л В и ВС. Определим усилия и напряжения в стержнях. В расчетах примем R = 220 МПа = 22 кН/см2 иус = 0,9.
Рис. 3.28
Составим уравнения равновесия:
Определим площади поперечных сечений стержней и выразим действующие в них напряжения через силу Р:
Напряжения в стержне АВ являются большими по величине. Определим из условия прочности этого стержня величину силы Р:
Примем Р = 245 кН и вычислим значения усилий и напряжений в стержнях:
Прочность стержней обеспечена.
Пример 3.12. Для латунного стержня ступенчато-постоянного сечения (рис. 3.29, а) определим величину силы .Риз условия прочности стержня. Определим напряжения в пределах каждого участка стержня. В расчетах используем метод допускаемых напряжений, приняв [о] = 80 МПа = 8 кН/см2.
Площади поперечных сечений стержня равны:
Строим эпюру продольных сил (рис. 3.29, б). Определяем нормальные напряжения в пределах участков стержня и выражаем их через силу Р.
Первый участок
Второй участок
Рис. 3.29
Эпюра о приведена на рис. 3.29, в. Ставим условие прочности по напряжениям на первом участке и определяем величину Р:
Примем Р = 40 кН и определим усилия и напряжения в стержне:
Источник
Сопротивление материалов
Решение задач на растяжение и сжатие
Расчеты на прочность при растяжении и сжатии
В результате проведения механических испытаний устанавливают предельные напряжения, при которых происходит нарушение работы или разрушение деталей конструкции.
Предельным напряжением при статической нагрузке для пластичных материалов является предел текучести, для хрупких — предел прочности.
Для обеспечения прочности деталей необходимо, чтобы возникающие в них в процессе эксплуатации наибольшие напряжения были меньше предельных.
Отношение предельного напряжения к напряжению, возникающему в процессе работы детали, называют коэффициентом запаса прочности и обозначают буквой s:
s = σпред / σ,
где σ = N / А – реальное напряжение, возникающее в элементе конструкции.
Недостаточный коэффициент запаса прочности может привести к потере работоспособности конструкции, а избыточный (слишком высокий) — к перерасходу материала и утяжелению конструкции. Минимально необходимый коэффициент запаса прочности называют допускаемым, и обозначают [s].
Отношение предельного напряжения к допускаемому запасу прочности называют допускаемым напряжением, и обозначают [σ]:
[σ] = σпред / [s].
Условие прочности в деталях и конструкциях заключается в том, что наибольшее возникающее в ней напряжение (рабочее напряжение) не должно превышать допускаемого:
σmax≤ [σ], или в другом виде: s ≥ [s].
Если допускаемые напряжения при растяжении и сжатии различны, их обозначают [σр] и [σс].
Расчетная формула при растяжении и сжатии имеет вид:
σ = N / А ≤ [σ]
и читается следующим образом: нормальное напряжение в опасном сечении, вычисленное по формуле σ = N /А, не должно превышать допустимое.
На практике расчеты на прочность проводят для решения задач:
— проектный расчет, при котором определяются минимальные размеры опасного сечения;
— проверочный расчет, при котором определяется рабочее напряжение и сравнивается с предельно допустимым;
-определение допускаемой нагрузки при заданных размерах опасного сечения.
***
Растяжение под действием собственного веса
Если ось бруса вертикальна, то его собственный вес вызывает деформацию растяжения или сжатия.
Рассмотрим брус постоянного сечения весом G, длиной l, закрепленный верхним концом и нагруженный только собственным весом G (рис.1).
Для определения напряжений в поперечном сечении на переменном расстоянии z от нижнего конца применим метод сечений.
Рассмотрим равновесие нижней части бруса и составим уравнение равновесия:
Σ Z = 0; Nz — Gz = 0, откуда:
Nz = Gz = γ А z,
где γ — удельный вес материала бруса, А – площадь его поперечного сечения, z — длина части бруса от свободного конца до рассматриваемого сечения.
Напряжения, возникающие в сечениях бруса, нагруженного собственным весом, определяются по формуле:
σz = Nz / А = γ А z / А = γ z,
т. е. для нагруженного собственным весом бруса нормальное напряжение не зависит от площади поперечного сечения. Очевидно, что опасное сечение будет находиться в заделке:
σmax = γ l.
Эпюра распределения напряжений вдоль оси бруса представляет собой треугольник.
Если требуется определить максимальную длину бруса, нагруженного собственным весом, используют расчет по предельному допустимому напряжению в сечении:
lпр = [σ] / γ.
***
Статически неопределимые задачи
Иногда в практике расчета конструкций требуется определить неизвестные силовые факторы (например, реакции связей или внутренние силы), при этом количество неизвестных силовых факторов превышает количество возможных уравнений равновесия для данной конструкции, и расчет произвести рассмотренными ранее способами не представляется возможным.
Задачи на расчет конструкций, в которых внутренние силовые факторы не могут быть определены с помощью одних лишь уравнений равновесия статики, называют статически неопределимыми. Подобные задачи нередко встречаются при расчете конструкций, подверженных температурным деформациям.
Для решения таких задач помимо уравнений равновесия составляют уравнение перемещений или деформаций.
Рассмотрим невесомый стержень постоянного сечения площадью А, длиной l, жестко защемленный по концам (см. рис. 2).
При нагревании в стержне возникают температурные напряжения сжатия.
Попробуем определить эти напряжения.
Составим для стержня уравнение равновесия:
Σ Z = 0; RС — RВ = 0,
откуда следует, что реакции RС и RВ равны между собой, а применив метод сечений установим, что продольная сила N в сечениях стержня равна неизвестным реакциям:
N = RС = RВ.
Составим дополнительное уравнение, для чего мысленно отбросим правую заделку и заменим ее реакцией RВ, тогда дополнительное уравнение деформации будет иметь вид:
Δlt = ΔlСВ
т. е. температурное удлинение стержня равно его укорочению под действием реакции RB, так как связи предполагаются абсолютно жесткими.
Температурное удлинение стержня определяется по формуле: Δlt = αtl, где α — коэффициент линейного расширения стержня.
Укорочение стержня под действием реакции: ΔlСВ = RB l / (EА).
Приравняв правые части равенств, получим:
αtl = RB l / (EА), откуда RB = αtEА.
Температурные напряжения в реальных конструкциях могут достигать значительных величин. Чтобы исключить их отрицательное влияние на прочность конструкций, прибегают к различным методам. Мосты, например, закрепляют лишь на одном конце (на одном берегу), а второй конец оставляют подвижным.
В длинных трубопроводах, подверженных температурным напряжениям, делают компенсирующие карманы, петли и т. д.
***
Материалы раздела «Растяжение и сжатие»:
- Примеры решения задач по сопромату.
- Основные понятия о деформации растяжения и сжатия.
- Деформации при растяжении и сжатии. Потенциальная энергия деформации растяжения.
Срез
Правильные ответы на вопросы Теста № 6
№ вопроса | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Правильный вариант ответа | 2 | 1 | 1 | 3 | 3 | 2 | 1 | 3 | 2 | 1 |
Источник
Пример решения задачи на растяжение и сжатие
.
Условие задачи на растяжение и сжатие
Стальной стержень (модуль Юнга кН/см2) с размерами см; см, см и площадью поперечного сечения нижнего участка см2, а верхнего – см2 нагружен внешними осевыми силами кН и кН. Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .
Расчетная схема для задачи на растяжение и сжатие
рис 3.2
Решение пример задачи на растяжение и сжатие
Определяем значение опорной реакции , возникающей в заделке
Учитывая, что , направим опорную реакцию вниз. Тогда из уравнения равновесия находим:
кН.
Строим эпюру продольных сил
Разбиваем длину стержня на три участка. Границами участков являются сечения, в которых приложены внешние силы и (или) изменяется размер поперечного сечения стержня.
Воспользуемся методом сечений. Делаем по одному сечению в произвольном месте каждого из трех участков стержня.
Cечение 1 – 1. Отбросим (или закроем листком бумаги) верхнюю часть стержня (рис. 3.2, б). Само сечение 1 – 1 мысленно считаем неподвижным. Мы видим, что внешняя сила растягивает рассматриваемую нижнюю часть стержня. Отброшенная нами верхняя часть стержня противодействует этому растяжению. Это противодействие мы заменим внутренней продольной силой , направленной от сечения и соответствующей растяжению. Разрушения стержня не произойдет только в том случае, если возникающая в сечении 1 – 1 внутренняя продольная сила уравновесит внешнюю силу . Поэтому очевидно, что
кН.
Сечение 2 – 2. Внешняя сила растягивает рассматриваемую нами нижнюю часть стержня, а сила ее сжимает (напомним, что 2 – 2 мы мысленно считаем неподвижным). Причем, согласно условию задачи, . Чтобы уравновесить эти две силы, в сечении 2 – 2 должна возникнуть внутренняя сила , противодействующая сжатию, то есть направленная к сечению. Она равна:
кН.
Сечение 3 – 3. Отбросим теперь часть стержня, расположенную ниже этого сечения. Внутренняя продольная сила должна уравновесить внешнюю (реактивную) сжимающую силу . Поэтому она направлена к сечению и равна:
кН.
Легко убедиться в том, что полученный результат не изменится, если мы отбросим не нижнюю, а верхнюю часть стержня. В этом случае продольная сила также противодействует сжатию. Она равна:
кН.
При построении эпюры продольных сил будем пользоваться следующим правилом знаков: внутренняя продольная сила, возникающая в поперечном сечении стержня, считается положительной, если она противодействует растяжению стержня, и отрицательной, если она противодействует его сжатию. Оно вводится для того, чтобы можно было наглядно видеть, какая часть стержня испытывает деформацию растяжения, а какая часть – деформацию сжатия. Это обстоятельство может оказаться крайне важным, в частности для стержней из хрупкого материала, которые имеют разные допускаемые напряжения на растяжение и на сжатие.
Таким образом, мы установили, что в любом сечении нижнего участка стержня внутренняя продольная сила противодействует растяжению и равна кН. В любом сечении среднего и верхнего участков стержня имеет место деформация сжатия, поэтому кН.
Для построения эпюры продольных сил проводим тонкой линией ось, параллельную оси стержня z (рис. 3.2, д). Вычисленные значения продольных сил в выбранном масштабе и с учетом их знака откладываем от этой вертикальной оси. В пределах каждого из участков стержня продольная сила остается постоянной, поэтому мы как бы «заштриховываем» горизонтальными линиями соответствующий участок.
Отметим, что каждая линия «штриховки» (то есть ордината эпюры) в принятом масштабе дает значение продольной силы в соответствующем поперечном сечении стержня.
Полученную эпюру обводим жирной линией.
Анализируя полученную эпюру, мы видим, что в местах приложения внешних сил на эпюре имеет место скачкообразное изменение продольной силы на величину, равную значению соответствующей внешней силы. Причем изменение поперечного размера стержня, как это видно из рис. 3.2, д, никак не сказывается на характере эпюры .
Строим эпюру нормальных напряжений
Нормальное напряжение, возникающее в k–м поперечном сечении стержня при растяжении (сжатии), вычисляется по следующей формуле
,
где и – продольная сила и площадь k–го поперечного сечения стержня соответственно.
В первом поперечном сечении стержня нормальное напряжение равно
кН/см2,
во втором –
кН/см2,
в третьем –
кН/см2.
Строим по вычисленным значениям эпюру (рис. 3.2, е). В пределах каждого из участков стержня напряжения постоянны, то есть эпюра напряжений параллельна оси. Заметим, что в отличие от эпюры N, на эпюре «скачок» имеет место не только в местах приложения внешних сил, но и там, где происходит изменение размеров поперечного сечения стержня.
Оцениваем прочность стержня
Сопоставляем наибольшее (по модулю) нормальное напряжение , которое в нашем примере возникает во втором сечении стержня, с допускаемым напряжением . Напомним, что допускаемое напряжение представляет собой долю от предельного напряжения , то есть от напряжения, при котором начинается разрушение материала. Разрушение стали, как пластичного материала, начинается при появлении значительных остаточных деформаций. Поэтому для стали предельное напряжение равно пределу текучести: . Тогда
кН/см2.
Условие прочности имеет вид . В нашем случае
кН/см2 > кН/см2,
следовательно, прочность стержня на втором участке не обеспечена.
Таким образом, площадь поперечного сечения стержня на втором участке, равную см2, нам необходимо увеличить.
Несложный анализ показывает, что на других участках стержня условие прочности выполняется.
Из условия прочности определяем требуемую площадь поперечного сечения стержня на втором участке:
см2.
Принимаем на втором участке см2.
Вычисляем удлинение всего стержня
При переменных по длине стержня значениях продольной силы и площади поперечного сечения удлинение вычисляется по формуле
,
где E – модуль Юнга, а – длина соответствующего участка стержня.
Тогда
см.
Таким образом, длина стержня уменьшается на мм.
Задача по сопромату на растяжение и сжатие для самостоятельного решения
Условие задачи на растяжение и сжатие
Стальной стержень (модуль Юнга кН/см2) находится под действием внешних осевых сил и (рис. 3.1). Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .
Схемы для задачи на растяжение и сжатие
Исходные данные к задаче на растяжение и сжатие
Номер схемы | F, см2 | a, м | b, м | c, м | P, кН |
1 | 2,0 | 1,2 | 1,4 | 1,6 | 11 |
2 | 2,2 | 1,4 | 1,6 | 1,4 | 12 |
3 | 2,4 | 1,8 | 1,6 | 1,2 | 13 |
4 | 2,6 | 1,6 | 2,0 | 1,0 | 14 |
5 | 2,8 | 2,0 | 1,8 | 1,2 | 15 |
6 | 3,0 | 2,2 | 1,6 | 1,4 | 16 |
7 | 3,2 | 2,4 | 1,4 | 1,6 | 17 |
8 | 3,4 | 2,6 | 1,2 | 1,8 | 18 |
9 | 3,6 | 2,8 | 1,0 | 1,4 | 19 |
3,8 | 2,4 | 1,6 | 1,2 | 20 |
Источник