Внутренняя энергия при сжатии и растяжении

Внутренняя энергия при сжатии и растяжении thumbnail

Считая процесс нагружения квазистатическим и учитывая линейную связь Al(N), для потенциальной энергии деформации имеем

Внутренняя энергия при сжатии и растяжении

Если брус неоднородный, то

Внутренняя энергия при сжатии и растяжении

Удельная потенциальная энергия деформации, соответственно, равна

Внутренняя энергия при сжатии и растяжении

Статически неопределимые системы. Перемещение систем в пространстве ограничено связями. Если число связей, наложенных на систему, больше, чем необходимое для ее решения число уравнений статики, то такие системы называют статически неопределимыми. Для их решения используют дополнительные уравнения совместности деформаций. Характерной особенностью статически неопределимых систем является возникновение в них температурных напряжений, образующихся без внешних усилий под воздействием температуры.

При испытании на растяжение обеспечивается однородность напряженного состояния всех точек образца на рабочей длине. Испытание на растяжение достаточно просто, а его результаты в меньшой степени зависят от формы и размеров образца, чем испытания других видов. Наконец, испытание на растяжение позволяет получить достоверные характеристики прочности, упругости и пластичности материала, которые можно также использовать в расчетах деталей, работающих в условиях сложного напряженного состояния.

Характерный вид диаграммы растяжения образца из пластичного материала представлен на рис. 14.3. На этой диаграмме можно выделить четыре основных участка (зоны).

Диаграммы растяжения образцов

Рис. 143. Диаграммы растяжения образцов

На участке ОЛ материал подчиняется закону Гука. Деформации образца очень малы и при разгрузке исчезают. Участок ОЛ называют зоной упругости. За пределами этого участка деформация образца складывается из упругой и пластической (остаточной) составляющих.

Участок ВС характеризуется нарастанием пластической деформации без увеличения осевой нагрузки (Р = Рт) и называется зоной общей текучести. При нагрузке Рт во всем объеме рабочей части образца происходят необратимые деформации сдвига между кристаллическими слоями. В результате текучести происходит перестройка кристаллической решетки, несущая способность образца увеличивается и для его дальнейшего деформирования требуется повышение нагрузки.

Участок CD называют зоной упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но гораздо более медленным, чем на участке ОЛ. В точке D диаграммы осевая растягивающая нагрузка достигает максимального значения (Р = Ртах). К этому моменту на образце наметилось место будущего разрыва — образовалось местное сужение, называемое шейкой (или пластический шарнир).

Дальнейший ход испытания связан с прогрессирующим утонением шейки и сосредоточением деформации образца в районе шейки. Участок DFдиаграммы носит название зоны местной текучести. Здесь нагрузка плавно уменьшается (Р тах) вплоть до разрушения образца в шейке.

Если образец нагрузить до точки L диаграммы, а затем плавно уменьшить нагрузку, то зависимость между силой и деформацией изобразится отрезком LM, параллельным прямой О А При полной разгрузке образца его удлинение уменьшится, но не исчезнет. Таким образом, полное удлинение образца в точке L складывается из двух составляющих — упругой А/у и остаточной — Д/(кт. При повторном нагружении такого образца материал будет деформироваться упруго до точки L (см. рис. 14.3, б). В результате предварительной вытяжки материал приобрел способность воспринимать без остаточных деформаций большие нагрузки. Исчезла площадка текучести, материал стал более хрупким. Подобное явление, называемое наклепом (или нагартовкой), широко используют в технике.

Параметры диаграммы растяжения в координатах А/—Р зависят не только от свойств материала образца, но и от его размеров. Чтобы получить характеристики материала, машинную диаграмму А/—Р перестраивают в координатах е —а (относительная деформация — напряжение). Связь между координатами определяется зависимостями

Внутренняя энергия при сжатии и растяжении

где А() — начальная площадь поперечного сечения образца; /() — начальная расчетная длина образца.

Поскольку А0 и /() — константы, диаграмма деформаций при растяжении имеет ту же форму (рис. 14.4, кривая 1). Обработка диаграммы деформаций позволяет определить следующие основные характеристики материала:

  • • физический предел текучести от = Рт/Л();
  • • предел прочности (временное сопротивление) овр = Ртах/Л0;

• относительное удлинение после разрыва
Внутренняя энергия при сжатии и растяжении

• относительное сужение после разрыва
Внутренняя энергия при сжатии и растяжении

Диаграммы деформаций пластичного материала

Рис. 14.4. Диаграммы деформаций пластичного материала:

1 — условная для испытания на растяжение; 2 — истинная; 3 — условная для испытания

на сжатие

Первые две характеристики относятся к характеристикам прочности, две другие — к характеристикам пластичности. Здесь /к — конечная расчетная длина образца; Ак — площадь поперечного сечения образца в месте его разрыва.

По величине относительного удлинения после разрыва 5 материалы условно разделяют на следующие группы:

  • • 8
  • • 5%
  • • 8 > 15% — пластичные материалы.

Более тщательная обработка диаграммы деформаций при растяжении позволяет определить дополнительные характеристики материала. Предел пропорциональности стм определяют как условное напряжение, при котором отступление от прямой пропорциональной зависимости между нагрузкой и удлинением составляет 50% (рис. 14.5). Для получения величины ап к кривой диаграммы деформаций проводится касательная под углом ап = = arctg(tga/l,5).

Под пределом упругости ау понимается наибольшее напряжение, до которого образец не получает остаточных деформаций. Поскольку определить это значение практически невозможно, условным пределом упругости называют то напряжение, при котором остаточная деформация составляет 0,01% (см. рис. 14.5, б). Для материалов без четко выраженной площадки текучести определяют условный предел текучести а0 2, который соответствует остаточной деформации 0,2% (рис. 14.5, в).

Диаграммы a — е

Рис. 14.5. Диаграммы a — е

Следует заметить, что рассмотренная диаграмма деформаций является условной, поскольку в процессе испытания площадь поперечного сечения образца А0 не остается постоянной, а постепенно уменьшается. Напряжение в шейке ак существенно отличается от рассчитанного но формуле a = = Р/А0 Продольная деформация в шейке ?к также значительно превосходит среднюю деформацию образца, характеризуемую величиной 8 (рис. 14.6). Диаграмма зависимости между напряжением и деформацией в шейке носит название истинной диаграммы деформаций (см. рис. 14.4, кривая 2). На участках упругости, текучести и упрочнения она практически совпадает с условной диаграммой деформаций. Последний участок истинной диаграммы деформаций строится как касательная к условной диаграмме,

Читайте также:  Отек при растяжении связок голеностопного

Характер деформации и эпюра остаточных деформаций в месте разрыва образца пластичного материала

Рис. 14.6. Характер деформации и эпюра остаточных деформаций в месте разрыва образца пластичного материала

проведенная из точки FK, координаты которой рассчитываются по формулам:

Диаграммы деформации хрупкого материала

Внутренняя энергия при сжатии и растяжении

Рис. 14.7. Диаграммы деформации хрупкого материала:

  • 1 — при растяжении:
  • 2 — при сжатии

Диаграмма деформаций при растяжении образца хрупкого материала не имеет площадки текучести и зоны упрочнения (рис. 14.7). Разрушение образца происходит при наибольшей величине нагрузки (Р = РП1ах) и весьма малой остаточной деформации без образования шейки. Здесь определяется только одна характеристика предела прочности при растяжении ствр = PmJA0.

Испытание на сжатие применяется в основном для определения характеристик малопластичных и хрупких материалов. Его можно рассматривать как обратное испытанию на растяжение (растяжение с обратным знаком).

При малых деформациях пластичные материалы имеют весьма близкие характеристики растяжения и сжатия. Диаграммы деформаций при растяжении и сжатии (в последней напряжения и деформации условно считают положительными) практически совпадают на участках упругости, текучести и упрочнения. Однако по мере нарастания пластических деформаций при сжатии все больше сказывается влияние трения на торнах и увеличение размеров поперечного сечения образца. В результате нагрузка резко возрастает (см. рис. 14.4, кривая 3), а образец сжимается в тонкий диск (рис. 14.8). Пластичный образец довести до разрушения практически не удается — испытание ограничивается силовыми возможностями испытательной машины.

Диаграмма деформаций при сжатии хрупкого образца подобна диаграмме при растяжении (см. рис. 14.7, кривая 2), однако прочность хрупких материалов при сжатии выше, чем при растяжении. Отношение соответству-

Внутренняя энергия при сжатии и растяжении

Ж 3 и

Рис. 14.8. Испытание на сжатие:

а — сферическая опора нижнего захвата; 6, в — формы выточек на торцах образца; г—е — стадии деформирования пластичного образца; ж—и — характер разрушения хрупкого образца

ющих пределов прочности а]к./а1ф характеризует степень хрупкости материала и составляет:

  • • 2,5—3 — для текстолита;
  • • 3—5 — для чугунов;
  • • 8—14 — для керамики;
  • • 12—150 — для вакуумных стекол.

Испытание на сжатие имеет некоторые особенности по сравнению с испытанием на растяжение. Для устранения перекоса образца при непараллель- ности его торцов в одном из захватов испытательной машины предусмотрена установка сферической опоры (см. рис. 14.8, а). Силы трения между торцами образца и плоскими элементами испытательной машины сдерживают поперечную деформацию образца вблизи его торцов.

В результате образец приобретает характерную бочкообразную форму, в его объеме создается сложное неоднородное напряженное состояние, не соответствующее расчетной схеме. Для уменьшения влияния внешнего трения применяют смазки (вазелин, солидол), прокладки (бумага, пропитанная парафином, тефлон), цилиндрические или конические выточки на торцах (рис. 14.8, б, в). Разрушение хрупкого образца при испытании на сжатие происходит вследствие сколов по плоскостям, наклоненным под углом 45° к оси образца (рис. 14.8, ж, з). Если удается устранить влияние сил внешнего трения на образце, при его разрушении возникают продольные трещины (рис. 14.8, и).

Для испытания на растяжение чаще всего используют образцы с цилиндрической рабочей частью (рис. 14.9). Начальный диаметр d0 выбирается из стандартного ряда в пределах d{) = (3 — 25) мм. Начальное значение расчетной длины образца /() = 11,3~ 10d() («длинный» образец) или /() = 5,65~ ~ 5d0 («короткий» образец). Длина цилиндрического участка 1{ > 1,1 /0.

Концы образца оформляются в виде утолщений (головок), форма и размеры которых определяются захватными устройствами испытательной машин. Между рабочей частью и головками предусмотрены переходные уча-

Стандартные образцы для испытания на растяжение

Рис. 14.9. Стандартные образцы для испытания на растяжение:

а, б — цилиндрические; в — плоский

стки, которые служат для уменьшения концентрации напряжений. Для получения характеристик листового материала с толщиной менее 5 мм применяют плоские образцы (см. рис. 14.9, в). Размер s0 равен толщине листа, ширина Ь0 составляет КНЗО мм, расчетная длина /0 =11,3yjs0b0.

Испытание на сжатие проводят на образцах цилиндрической или кубической формы (рис. 14.10). Для предотвращения потери устойчивости цилиндрического образца во время испытания его высота ограничена: А0 = (1-^3)с70

Образцы для испытания на сжатие

Рис. 14.10. Образцы для испытания на сжатие:

а — цилиндрический; б — кубический

Источник

В машиностроении, строительстве и архитектуре при расчетах прочности и жесткости материалов используется математический аппарат технической механики. Деформация растяжения – одно из ключевых понятий, характеризующее механические процессы, происходящие в материалах при приложении к ним внешних воздействий. Для наглядности изучаются изменения, происходящие в брусе с постоянным сечением, характерные для упругой деформации при приложении внешних усилий.

Читайте также:  Лечение народными средствами растяжения связок

Закон Гука (английский физик Р. Гук, 1653-1703) для упругой деформации растяжения/сжатия гласит, что нормальное напряжение находится в линейной зависимости (прямо пропорционально) к относительному удлинению/укорочению. Математический аппарат технической механики описывает эту формулу следующим образом:

Коэффициент пропорциональности E (модуль упругости, модуль Юнга) – величина определяющая жесткость материала, единица измерения – паскаль (ПА).

Его значения были установлены эмпирическим путем для большинства конструкционных материалов, необходимую информацию можно почерпнуть в справочниках по машиностроению. Относительная деформация является отношением изменения длины бруса к его изначальным размерам, это безразмерная величина, которая иногда отражается в процентном соотношении.

При растяжении или сжатии у бруса меняется не только длина, но происходят поперечные деформации: при сжатии образуется утолщение, при растяжении толщина сечения становится меньше. Величины этих изменений находятся в линейной зависимости друг от друга, причем установлено, что коэффициент пропорциональности Пуассона (фр. ученый С. Пуассон, 1781-1840) остается всегда неизменным для исследуемого материала.

Внутренние усилия при растяжении и сжатии

При приложении к брусу с постоянным сечением внешних воздействий, действие которых в любом поперечном разрезе направлено параллельно его центральной оси и перпендикулярно сечению, с ним происходит следующий вид деформации: растяжение или сжатие.  На основе гипотезы о принципе независимости внешнего воздействия для каждого из поперечных разрезов можно рассчитать внутреннее усилие как векторную сумму всех приложенных внешних воздействий. Растягивающие нагрузки в сопромате принято считать положительными, а сжимающие отрицательными.

Рассмотрев произвольный разрез бруса или стержня, можно сказать что внутренние напряжения равны векторной сумме всех внешних сил, сгруппированных по одной из его сторон. Это верно только с учетом принципа Сен-Венана (фр. инженер А. Сен-Венан, 1797-1886) о смягчении граничных условий, т.к. распределение внутренних усилий по поверхности разреза носит сложный характер с нелинейными зависимостями, но в данном случае значением погрешности можно пренебречь как несущественным.

Применяя гипотезу Бернулли (швейцарский математик, И. Бернулли, 1667-1748) о плоских сечениях, для более наглядного представления процессов распределения сил и напряжений по центральной оси бруса можно построить эпюры. Визуальное представление более информативно и в некоторых случаях позволяет получить необходимые величины без сложных расчетов. Графическое представление отражает наиболее нагруженные участки стержня, инженер может сразу определить проблемные места и ограничиться расчетами только для критических точек.

Все вышесказанное может быть применимо при квазистатической (система может быть описана статически) нагрузке стержня с постоянным диаметром. Потенциальная энергия системы на примере растяжения стержня определяется по формуле:

U=W=FΔl/2=N²l/(2EA)

Потенциальная энергия растяжения U концентрируется в образце и может быть приравнена к выполнению работы W (незначительное выделение тепловой энергии можно отнести к погрешности), которая была произведена силой F для увеличения длины стержня на значение абсолютного удлинения.  Преобразуя формулу, получаем, что вычислить значение величины потенциальной энергии растяжения можно, рассчитав отношение квадрата продольной силы N помноженной на длину стержня l и удвоенного произведения модуля Юнга E материала на величину сечения A.

Как видно из формулы, энергия растяжения всегда носит положительное значение, для нее невозможно применить гипотезу о независимости действия сил, т.к. это не векторная величина. Единица измерения – джоуль (Дж). В нижней части формулы стоит произведение EA – это так называемая жесткость сечения, при неизменном модуле Юнга она растет только за счет увеличения площади. Величина отношения жесткости к длине бруса рассматривается как жесткость бруса целиком.

Напряжения при растяжении сжатии

Используя гипотезу Бернулли для продольной упругой деформации стержня, можно определить продольную силу N как равнодействующую всех рассредоточенных по сечению внутренних усилий. Гипотеза Бернулли совместно с гипотезой о ненадавливании волокон позволяет сказать, что σ в произвольной точке разреза будут постоянны, т.к.  реакция продольных волокон одинакова на всем поперечном разрезе. Для определения величины нормального напряжения σ используется следующая формула:

Напряжение для упруго деформированного стержня описывается как отношение внутренней силы N к площади сечения A. Считается положительным при растяжении, при сжатии рассматривается как отрицательное.

Абсолютная деформация зависит от жесткости сечения, величины продольной силы и длины бруса. Зависимость можно описать по следующей формуле:

Δl=Nl/EA

Таким образом, методика расчета величины абсолютного изменения длины такова: необходимо просчитать отношение значения продольной силы N умноженной на длину стержня l и жесткости сечения (произведение модуля Юнга E на площадь сечения A).

В реальных расчетах на брус действует достаточно много разнонаправленных сил, для решения таких задач требуется построение эпюр, которые могут наглядно показать какие напряжения действуют на разных участках, чем обусловлена деформация при растяжении и сжатии.

В рамках такой квазистатической (условно статической) системы, как брус или стержень с переменным сечением или отверстием, потенциальная энергия растяжения может быть рассмотрена как сумма энергий однородных участков. При проведении расчетов важно правильно разделить стержень на участки и смоделировать все участвующие в процессе силы и напряжения. Для реальных расчетов построение эпюр – сложная задача, которая требует от инженера хорошего понимания действующих на деталь нагрузок. Например, вал со шкивами разного диаметра требует сначала определения критических точек и разбивки на соответствующие участки, затем построения графиков по ним.

Читайте также:  Что делать после растяжения мышц

Деформации при растяжении сжатии

При растяжении/сжатии бруса могут возникать 2 вида деформации. Первый – упругая, второй – пластическая. Для упругой деформации характерно восстановление первоначальных параметров после прекращения воздействия. В случае пластической стадии деформации материала он утрачивает и не восстанавливает форму и размеры. Величина воздействия для перехода одного вида в другой называется пределом текучести.

Для расчета перемещения при растяжении бруса или стержня следует использовать метод разделения на участки, в рамках которых осуществляется приложение внешних воздействий. В точках воздействия силы следует вычислить величину изменения длины, используя формулу: Δl=Nl/EA. Как видно она зависит от жесткости сечения, длины бруса или стержня и величины действующей продольной силы. Итоговым перемещением для бруса целиком будет сумма всех частичных перемещений, рассчитанных для точек приложения силы.

Поперечные деформации бруса (становится более толстым при сжатии и тонким при растяжении) также характеризуются абсолютной и относительной величиной деформации. Первая – разность между размером сечения после и до приложения внешних воздействий, вторая – отношение абсолютной деформации к его исходному размеру. Коэффициент Пуассона, отражающий линейную зависимость продольной и поперечной деформаций, определяет упругие качества материалов и считается неизменным для растяжения и сжатия. Продольные наиболее наглядно отражают процессы, происходящие в брусе или стержне при внешнем воздействии. Зная величину любой из них (продольной или поперечной) и используя коэффициент Пуассона, можно рассчитать значение неизвестной.

Для определения величины деформации пружины при растяжении можно применить закон Гука для пружин:

F=kx

В данном случае х – увеличение длины пружины, k – коэффициент жесткости (единица измерения Н/м), F – сила упругости, направленная в противоположную от смещения сторону. Величина абсолютной деформации будет равна отношению силы упругости к коэффициенту жесткости. Коэффициент жесткости определяет упругие свойства материала, используемого для изготовления, может быть использован для выбора материала изготовления в условиях решения конкретной задачи.

Расчеты на прочность и жесткость

Прочность характеризует способность конструкционного материала сопротивляться внешним воздействиям без разрушений и остаточных изменений. Жесткость находится в линейной зависимости от модуля Юнга и размера сечения. Чем больше площадь, модуль упругости не меняется, тем больше жесткость. В общем случае жесткость подразумевает способность деформироваться без значительных изменений. Коэффициент запаса прочности – безразмерная величина, равная отношению предельного напряжения к допустимому. Запас прочности характеризует штатный режим работы конструкции даже с учетом случайных и не предусмотренных нагрузок. Наименьшим запасом прочности обладают пластические (1.2-2.5) и хрупкие (2-5) материалы.

Применение в расчетах этих коэффициентов позволяет, например, рассчитать опасную толщину для стержня, при которой может возникнуть максимальное нормальное напряжение. Используя коэффициент прочности и возможное предельное напряжение возможно произвести расчет необходимого диаметра вала, который гарантированно обеспечит упругую деформацию и не приведет к пластической. Для инженеров-экономистов важны расчеты наименьших безопасных размеров деталей конструкции по заданным нагрузкам.

Большинство практических расчетов на прочность и жесткость производятся для получения минимальных значений геометрических размеров конструкционных элементов и деталей машин в условиях известных внешних воздействий и необходимого и достаточного запаса прочности. Может решаться обратная задача получения значений предельных нагрузок при условии сохранения геометрических размеров и для конкретного материала.

Сложные конструкции могут быть разделены на элементарные части, для которых будут производиться расчеты, затем полученные результаты интерпретируются в рамках всей системы, для этого удобно строить эпюры распределения внешних воздействий и внутренних напряжений статически определенной системы.

С помощью известной жесткости материала делают расчеты максимально возможной длины балки или стержня (вала) при условии неизменности его сечения. Для ступенчатых валов необходимо строить эпюры воздействия внешних сил и возникающих в точках их приложения внутренних напряжений в критических точках. От правильно построенной теоретической модели будет зависеть насколько эффективно и долго прослужит вал для станка, не разрушится ли он от динамических крутящих моментов. На этапе проектирования можно выявить потенциальные слабые точки и рассчитать необходимые параметры для заданного предела прочности.

С расчетами на прочность связаны такие понятия, как срез и смятие. Срез проявляется в виде разрушения детали соединения в условиях возникновения в ее поперечном сечении перпендикулярной к нему и достаточной силы.

При расчетах соединений используют пределы текучести используемых материалов и коэффициенты запаса прочности, вычисляют максимально возможные напряжения.

Исследования на прочность обычно подразумевают решение нескольких задач: в условиях проведения поверочного расчета на проверку прочности при известных усилиях и площади сечения оценивают фактический коэффициент запаса прочности; подбор оптимального диаметра при заданных нагрузках и допустимом напряжении; вычисляют грузоподъемность или несущую способность с помощью определения внутреннего усилия при известной площади сечения и напряжении.

Прочностные расчеты при разных видах воздействий в рамках условно статических систем сложны, требуют учета многих, иногда не очевидных, факторов, их практическая ценность заключается в вычислении допустимых размеров конструкционных материалов для заданных параметров запаса прочности.

Источник