Внецентренное растяжение сжатие примеры решения

Внецентренное растяжение сжатие примеры решения thumbnail

Пример решения задачи на растяжение и сжатие

.

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) с размерами см; см, см и площадью поперечного сечения нижнего участка см2, а верхнего – см2 нагружен внешними осевыми силами кН и кН. Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Расчетная схема для задачи на растяжение и сжатие

рис 3.2

Решение пример задачи на растяжение и сжатие

Определяем значение опорной реакции , возникающей в заделке

Учитывая, что , направим опорную реакцию вниз. Тогда из уравнения равновесия находим:

кН.

Строим эпюру продольных сил

Разбиваем длину стержня на три участка. Границами участков являются сечения, в которых приложены внешние силы и (или) изменяется размер поперечного сечения стержня.

Воспользуемся методом сечений. Делаем по одному сечению в произвольном месте каждого из трех участков стержня.

Cечение 1 – 1. Отбросим (или закроем листком бумаги) верхнюю часть стержня (рис. 3.2, б). Само сечение 1 – 1 мысленно считаем неподвижным. Мы видим, что внешняя сила растягивает рассматриваемую нижнюю часть стержня. Отброшенная нами верхняя часть стержня противодействует этому растяжению. Это противодействие мы заменим внутренней продольной силой , направленной от сечения и соответствующей растяжению. Разрушения стержня не произойдет только в том случае, если возникающая в сечении 1 – 1 внутренняя продольная сила уравновесит внешнюю силу . Поэтому очевидно, что

кН.

Сечение 2 – 2. Внешняя сила растягивает рассматриваемую нами нижнюю часть стержня, а сила ее сжимает (напомним, что 2 – 2 мы мысленно считаем неподвижным). Причем, согласно условию задачи, . Чтобы уравновесить эти две силы, в сечении 2 – 2 должна возникнуть внутренняя сила , противодействующая сжатию, то есть направленная к сечению. Она равна:

кН.

Сечение 3 – 3. Отбросим теперь часть стержня, расположенную ниже этого сечения. Внутренняя продольная сила должна уравновесить внешнюю (реактивную) сжимающую силу . Поэтому она направлена к сечению и равна:

кН.

Легко убедиться в том, что полученный результат не изменится, если мы отбросим не нижнюю, а верхнюю часть стержня. В этом случае продольная сила также противодействует сжатию. Она равна:

кН.

При построении эпюры продольных сил будем пользоваться следующим правилом знаков: внутренняя продольная сила, возникающая в поперечном сечении стержня, считается положительной, если она противодействует растяжению стержня, и отрицательной, если она противодействует его сжатию. Оно вводится для того, чтобы можно было наглядно видеть, какая часть стержня испытывает деформацию растяжения, а какая часть – деформацию сжатия. Это обстоятельство может оказаться крайне важным, в частности для стержней из хрупкого материала, которые имеют разные допускаемые напряжения на растяжение и на сжатие.

Таким образом, мы установили, что в любом сечении нижнего участка стержня внутренняя продольная сила противодействует растяжению и равна кН. В любом сечении среднего и верхнего участков стержня имеет место деформация сжатия, поэтому кН.

Для построения эпюры продольных сил проводим тонкой линией ось, параллельную оси стержня z (рис. 3.2, д). Вычисленные значения продольных сил в выбранном масштабе и с учетом их знака откладываем от этой вертикальной оси. В пределах каждого из участков стержня продольная сила остается постоянной, поэтому мы как бы «заштриховываем» горизонтальными линиями соответствующий участок.

Отметим, что каждая линия «штриховки» (то есть ордината эпюры) в принятом масштабе дает значение продольной силы в соответствующем поперечном сечении стержня.

Полученную эпюру обводим жирной линией.

Анализируя полученную эпюру, мы видим, что в местах приложения внешних сил на эпюре имеет место скачкообразное изменение продольной силы на величину, равную значению соответствующей внешней силы. Причем изменение поперечного размера стержня, как это видно из рис. 3.2, д, никак не сказывается на характере эпюры .

Строим эпюру нормальных напряжений

Нормальное напряжение, возникающее в k–м поперечном сечении стержня при растяжении (сжатии), вычисляется по следующей формуле

,

где и – продольная сила и площадь k–го поперечного сечения стержня соответственно.

В первом поперечном сечении стержня нормальное напряжение равно

кН/см2,

во втором –

кН/см2,

в третьем –

кН/см2.

Строим по вычисленным значениям эпюру (рис. 3.2, е). В пределах каждого из участков стержня напряжения постоянны, то есть эпюра напряжений параллельна оси. Заметим, что в отличие от эпюры N, на эпюре «скачок» имеет место не только в местах приложения внешних сил, но и там, где происходит изменение размеров поперечного сечения стержня.

Оцениваем прочность стержня

Сопоставляем наибольшее (по модулю) нормальное напряжение , которое в нашем примере возникает во втором сечении стержня, с допускаемым напряжением . Напомним, что допускаемое напряжение представляет собой долю от предельного напряжения , то есть от напряжения, при котором начинается разрушение материала. Разрушение стали, как пластичного материала, начинается при появлении значительных остаточных деформаций. Поэтому для стали предельное напряжение равно пределу текучести: . Тогда

кН/см2.

Условие прочности имеет вид . В нашем случае

кН/см2 > кН/см2,

следовательно, прочность стержня на втором участке не обеспечена.

Таким образом, площадь поперечного сечения стержня на втором участке, равную см2, нам необходимо увеличить.

Несложный анализ показывает, что на других участках стержня условие прочности выполняется.

Из условия прочности определяем требуемую площадь поперечного сечения стержня на втором участке:

см2.

Принимаем на втором участке см2.

Вычисляем удлинение всего стержня

При переменных по длине стержня значениях продольной силы и площади поперечного сечения удлинение вычисляется по формуле

,

где E – модуль Юнга, а – длина соответствующего участка стержня.

Тогда

см.

Таким образом, длина стержня уменьшается на мм.

Задача по сопромату на растяжение и сжатие для самостоятельного решения

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) находится под действием внешних осевых сил и (рис. 3.1). Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Схемы для задачи на растяжение и сжатие

Исходные данные к задаче на растяжение и сжатие

Номер схемы

F, см2

a, м

b, м

c, м

P, кН

1

2,0

1,2

1,4

1,6

11

2

2,2

1,4

1,6

1,4

12

3

2,4

1,8

1,6

1,2

13

4

2,6

1,6

2,0

1,0

14

5

2,8

2,0

1,8

1,2

15

6

3,0

2,2

1,6

1,4

16

7

3,2

2,4

1,4

1,6

17

8

3,4

2,6

1,2

1,8

18

9

3,6

2,8

1,0

1,4

19

3,8

2,4

1,6

1,2

20

Источник

Многие элементы строительных конструкций (колонны, стойки, опоры) находятся под воздействием сжимающих сил, приложенных не в центре тяжести сечения. Рассмотрим, например, колонну, на которую опирается балка перекрытия (рис. 11.11). Поскольку сила Р, характеризующая передачу нагрузки от балки на колонну, действует по отношению к ее оси с эксцентриситетом е, колонна испытывает сжатие с изгибом. При этом в поперечных сечениях колонны наряду с продольной силой N = —Р возникает изгибающий момент, величина которого равна М = Ре.

Таким образом, внецентренное растяжение и сжатие стержня имеют место в случае, когда нагрузки действуют вдоль прямой, параллельной оси стержня. Будем рассматривать в основном задачи внецентренного сжатия, наиболее характерные для элементов строительных конструкций. При внецентренном растяжении во всех приводимых ниже формулах надо изменить знак перед силой Р на противоположный.

Рассмотрим стержень, нагруженный на торце внецентренно приложенной в точке К сжимающей силой Р, направленной параллельно оси Ох (рис. 11.12, а). Обозначим координаты точки приложения силы через ур и zp- Перенесем силу в центр тяжести сечения и согласно правилам статики добавим два момента Mz=—Pyp и Му = —Pzp (рис. 11.12, б). При этом внутренние усилия в произвольном поперечном сечении стержня будут равны:
Внецентренное растяжение сжатие примеры решения

Внецентренное растяжение сжатие примеры решения

Рис. 11.11

Внецентренное растяжение сжатие примеры решения

Рис. 11.12

Согласно принятому правилу знаков внутренние усилия являются отрицательными, поскольку в точках первой четверти сечения они вызывают сжатие. Отметим также, что величины внутренних усилий не изменяются по длине стержня и, таким образом, распределение нормальных напряжений в сечениях, достаточно удаленных от места приложения нагрузки, будет одинаковым.

Подставив (11.11) в (11.1), получим формулу для определения нормальных напряжений при внецентренном сжатии:

Внецентренное растяжение сжатие примеры решения

Эту формулу можно преобразовать к виду

Внецентренное растяжение сжатие примеры решения

где iy, iz — главные радиусы инерции сечения, определяемые по формулам:

Внецентренное растяжение сжатие примеры решения

Приравняв выражение (11.12) к нулю, получим уравнение нулевой линии

Внецентренное растяжение сжатие примеры решения

Полагая в этом уравнении последовательно у = 0 и z — 0, получим формулы для определения отрезков, отсекаемых нулевой линией на осях координат:

Внецентренное растяжение сжатие примеры решения

Отложив эти отрезки на осях, проведем нулевую линию (рис. 11.13), в каждой точке которой о = 0. Отметим, что при внецентренном сжатии (растяжении) нулевая линия не проходит через центр тяжести сечения, а ее положение не зависит от величины силы Р.

Поскольку знаки величин ^и^ противоположны знакам соответственно zp и у , нулевая линия проходит через те четверти системы координат, которые не содержат точки приложения силы (рис. 11.13).

Внецентренное растяжение сжатие примеры решения

Рис. 11.13

Рис. 11.14

Положение нулевой линии зависит от геометрических характеристик сечения и от координат точки приложения силы. При этом величины Zq, zp и у0, ^являются обратно пропорциональными по отношению друг к другу.

Исследуем изменение положения нулевой линии при перемещении точки приложения силы вдоль прямой, проходящей через центр тяжести сечения. Из формул (11.14) следует, что все нулевые линии будут при этом параллельными, причем при приближении точки приложения силы к центру тяжести сечения величины zp и у уменьшаются и нулевая линия удаляется от него, и наоборот (рис. 11.14).

Нетрудно доказать также следующее положение. Если точка приложения силы перемещается вдоль прямой, не проходящей через центр тяжести сечения, то нулевая линия поворачивается относительно некоторой точки (рис. 11.15). Справедливо и обратное утверждение. Это свойство используется при построении особой фигуры — ядра сечения.

Внецентренное растяжение сжатие примеры решения

Рис. 11.16

Рис. 11.15

Нормальные напряжения в сечении изменяются по линейному закону, увеличиваясь по абсолютной величине по мере удаления от нулевой линии. Эпюра о строится на прямой, перпендикулярной к нулевой линии. При этом она может быть разнозначной или однозначной (см. рис. 11.14). Последнее имеет место в случае, если точка приложения силы Р расположена вблизи центра тяжести сечения. Напомним, что при центральном сжатии или растяжении нормальные напряжения являются одинаковыми по величине, а эпюра с представляет собой прямоугольник.

В точках прямой, проходящей через центр тяжести сечения и параллельной нулевой линии, нормальные напряжения равны °о =—P/F.

Рассмотрим случай разнозначной эпюры с (рис. 11.14, а). Так же как и при косом изгибе, наибольшие растягивающие и сжимающие напряжения действуют в точках сечения, наиболее удаленных от нулевой линии (угловые точки А и В на рис. 11.14). Для произвольного сечения эти точки и их координаты устанавливаются с помощью касательных к сечению, параллельных нулевой линии (например, точка А на рис. 11.16). В общем случае онбф |онм|.

Если материал стержня неодинаково сопротивляется растяжению и сжатию, то необходимо обеспечить выполнение двух условий прочности по наибольшим растягивающим и наибольшим сжимающим напряжениям в точках А и В:

Внецентренное растяжение сжатие примеры решения

где Rp и Rc — расчетные сопротивления материала при растяжении и сжатии; zA, УА и zB, У в ~ координаты наиболее напряженных точек сечения.

Из условий прочности (11.15) можно определить величину предельной расчетной силы.

Для стержней из материала, одинаково сопротивляющегося растяжению и сжатию (R^ = Rc = R), а также в случае однозначной эпюры о (рис. 11.14, б) достаточно обеспечить выполнение одного условия прочности по точке с наибольшими по абсолютной величине напряжениями.

В инженерной практике чаще имеет место случай внецент- ренного сжатия (или растяжения), когда точка приложения силы Р расположена на одной из главных осей (рис. 11.17, а). При этом согласно формулам (11.14) нулевая линия параллельна другой главной оси (рис. 11.17, б). Нормальные напряжения определяются по двухчленной формуле. Например, для случая, показанного на рис. 11.17, имеем

Внецентренное растяжение сжатие примеры решенияВнецентренное растяжение сжатие примеры решения

Рис. 11.17

Многие строительные материалы (бетон, кирпичная кладка, чугун и др.) плохо сопротивляются растяжению. Поэтому в элементах конструкций из таких материалов, работающих на вне- центренное сжатие, нежелательно появление растягивающих нормальных напряжений. Это условие будет выполнено, если точка приложения силы расположена внутри или на границе некоторой области вокруг центра тяжести, которая называется ядром сечения.

Граница или контур ядра строится с помощью нулевых линий, которые являются касательными к сечению. При этом координаты точек контура ядра определяются с помощью формул

(11.14):

Внецентренное растяжение сжатие примеры решения

Здесь у0, Zq — координаты точек пересечения нулевых линий, касательных к контуру сечения, с осями координат; ур, zp — координаты точек контура ядра, соответствующие положению данной касательной.

Таким образом, если точка приложения силы расположена на контуре ядра, то нулевые линии являются касательными к сечению, а эпюра с представляет собой треугольник. При приложении силы внутри ядра нулевая линия проходит вне сечения (условная нулевая линия) и эпюра о является трапецией.

Ядро сечения содержит центр тяжести и является выпуклой фигурой, поскольку соответствующие границе ядра нулевые линии должны касаться огибающей контура сечения и не пересекать его.

При построении контура ядра его точки надо соединить соответствующими линиями. Если нулевые линии, касательные к сечению, перемещаются при переходе от одного положения к другому путем поворота вокруг угловых точек, то на основании изложенного выше положения линии контура ядра являются прямыми.

Внецентренное растяжение сжатие примеры решения

Рис. 11.18

Внецентренное растяжение сжатие примеры решения

Рис. 11.19

Внецентренное растяжение сжатие примеры решения

Рис. 11.20

Построим ядро сечения для некоторых фигур. Для прямоугольника достаточно провести две нулевые линии, являющиеся касательными к сечению (рис. 11.18). Для касательной 1 — 1 имеем у() = И/2 и Zq= °°. Учитывая, что

Внецентренное растяжение сжатие примеры решения

определяем координаты точки 1 контура ядра сечения:

Внецентренное растяжение сжатие примеры решения

Аналогично для касательной 2—2 находим координаты точки 2: zp = — b/6, ур = 0. Точки 3 и 4 расположены симметрично по отношению к точкам 1 и 2. Ядро сечения представляет собой ромб с длинами диагоналей h/З и Ь/3 (рис. 11.18).

Ядро сечения для двутавра также представляет собой ромб, значительно вытянутый вдоль оси Оу (рис. 11.19), поскольку J. » Jy. Ядро сечения для швеллера является четырехугольником, симметричным относительно оси Oz (рис. 11.20).

При построении ядра сечения для круга достаточно провести одну касательную 1—1 (рис. 11.21), для которой у0 = R, Zq = °°.

Внецентренное растяжение сжатие примеры решения

Рис. 11.21

Внецентренное растяжение сжатие примеры решения

Рис. 11.22

Учитывая, что для круга


Внецентренное растяжение сжатие примеры решения

находим координаты точки 1:

Внецентренное растяжение сжатие примеры решения

Очевидно, что ядро сечения для круга представляет собой также круг с радиусом г = R/4. Такой же вид имеет ядро для кольцевого сечения (рис. 11.22), однако радиус ядра значительно больше, чем для сплошного круга. Нетрудно показать, что при 5 « R2 радиус ядра сечения приближенно равен Rq/2, где Rq — средний радиус кольца.

Внецентренное растяжение сжатие примеры решения

Рис. 11.23

При построения ядра сечения, показанного на рис. 11.23, достаточно провести четыре касательные к сечению и определить координаты четырех точек контура ядра. Точки 1, 2 и 3 надо соединить прямыми линиями. Контур ядра между точками 3, 4 является криволинейным. Точки 5 и 6 симметричны по отношению к точкам 3 и 2.

Пример 11.5. Для короткого чугунного стержня коробчатого сечения, испытывающего внецентренное сжатие (рис. 11.24, а), определим расчетную величину силы Р из условий прочности. Построим эпюру о и ядро сечения. В расчетах примем Rp = = 50 МПа = 5 кН/см2, Rc = 150 МПа = 15 кН/см2 и ус = 1,0.

Внецентренное растяжение сжатие примеры решения

Рис. 11.24

Определяем необходимые геометрические характеристики сечения (рис. 11.24, б):

Внецентренное растяжение сжатие примеры решения

Координаты точки приложения силы Р равны: ур = 6 см, zp — = —4,5 см. Определяем по формулам (11.14) величины отрезков, отсекаемых нулевой линией на осях координат:

Внецентренное растяжение сжатие примеры решения

Отложив эти отрезки на осях, проводим нулевую линию, которая пересекает сечение и делит его на зоны растяжения и сжатия. Эпюра с является разнозначной (рис. 11.24, б). Наибольшие растягивающие и сжимающие напряжения действуют в угловых точках Ли В, наиболее удаленных от нулевой линии. Координаты этих точек равны: уА = —6 см, zA = 4,5 см, ув= 6 см, zB = —4,5 см.

Из условий прочности при растяжении и сжатии находим два значения расчетной силы Р:

Внецентренное растяжение сжатие примеры решения

Для обеспечения прочности стержня в зонах растяжения и сжатия принимаем с округлением меньшую силу Р = 100 кН. При этом напряжения в точках Ли В равны:

Внецентренное растяжение сжатие примеры решения

Прочность стержня обеспечена. Эпюра о приведена на рис. 11.24, б.

Для построения ядра сечения достаточно провести две нулевые линии, касательные к контуру сечения, и определить координаты двух точек контура ядра.

Касательная 1—1:

Внецентренное растяжение сжатие примеры решения

Касательная 2—2:

Внецентренное растяжение сжатие примеры решения

Проведенные касательные соответствуют точкам 1 и 2 контура ядра сечения. Симметрично расположены точки 3 и 4. Поскольку касательные переходят из одного положения в другое путем поворота вокруг угловых точек сечения, все линии контура ядра являются прямыми. Ядро сечения представляет собой ромб (рис. 11.24, б). Так как точка приложения силы принадлежит одновременно касательным 1—1 и 2—2 , нулевая линия проходит по линии контура ядра 1—2.

Пример 11.6. Для короткого стального стержня составного сечения, находящегося в условиях внецентренного сжатия (рис. 11.25, а), определим величину расчетной силы Риз условия прочности. В расчетах примем Р = 210МПа = 21 кН/см2 и ус = 0,9. Построим эпюру о и ядро сечения.

Поскольку zp = 0, данная задача относится к частному случаю внецентренного сжатия. Определяем необходимые геометрические характеристики сечения:

Внецентренное растяжение сжатие примеры решения

Определяем положение нулевой линии:

Внецентренное растяжение сжатие примеры решенияВнецентренное растяжение сжатие примеры решения

Рис. 11.25

Нулевая линия параллельна оси Oz и не пересекает сечение. Эпюра а является однозначной (рис. 11.25, б). Наибольшие сжимающие напряжения действуют в крайних верхних точках сечения (у = ув = —11 см). Из условия прочности определяем расчетное значение силы Р:

Внецентренное растяжение сжатие примеры решения

При действии силы Р = 744 кН наибольшие сжимающие напряжения в крайних верхних точках сечения по абсолютной величине равны уCR = 189 МПа. Определяем напряжения в крайних нижних точках сечения (у = уА= 11 см):

Внецентренное растяжение сжатие примеры решения

Напряжения в поперечных сечениях стержня являются сжимающими. Эпюра а приведена на рис. 11.25, б.

Ядро сечения представляет собой ромб, координаты вершин которого определяем с помощью двух касательных к сечению. Касательная 1—1:

Внецентренное растяжение сжатие примеры решения

Касательная 2—2:

Внецентренное растяжение сжатие примеры решения

Точка приложения силы расположена внутри ядра сечения (рис. 11.25, б).

Источник