Условие прочности при растяжении сжатии имеет вид

Министерство транспорта Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

Ульяновское высшее авиационное училище

Гражданской авиации (институт)

И.Н. Карпунина

Н.Ф. Леденева

И.А. Мельникова

И.Е. Сиднева

МЕХАНИКА

Методические указания
по выполнению расчетно-графических работ

(раздел «Сопротивление материалов»)

Ульяновск 2012

ББК В2

К 26

Карпунина, И. Н. Механика : метод. указания по выполнению расчетно-графических работ (раздел «Сопротивление материалов») / И. Н. Карпунина, Н. Ф. Леденева, И. А. Мель-никова, И. Е. Сиднева. – Ульяновск : УВАУ ГА(И), 2012. – 44 с.

Содержат задания и методические рекомендации по выполнению расчетно-графических работ по курсу «Механика» (раздел «Сопротивление материалов»). Для каждой темы приведены 30 вариантов схем, для каждой схемы – по 10 вариантов числовых значений.

Предназначены для курсантов направления 161000.62 – Аэронавигация, профилей подготовки 161000.62.08 – Поисковое и аварийно-спасательное обеспечение полетов воздушных судов и 161000.6209 – Обеспечение авиационной безопасности; для курсантов направления 280700.62 – Техносферная безопасность, профиля подготовки 280700.62.02 – Безопасность технологических процессов и производств.

Печатается по решению Редсовета института.

© Ульяновское высшее авиационное училище
гражданской авиации (институт), 2012

оглавление

1. Растяжение и сжатие. 4

1.1. Основные понятия. 4

1.2. Построение эпюр продольных сил, нормальных напряжений
и осевых перемещений. 6

1.3. Условие прочности при растяжении (сжатии) 8

1.4. Задание на расчетно-графическую работу № 1. 9

1.5. Пример выполнения расчетно-графической работы № 1. 9

1.6. Варианты расчетных схем.. 13

2. Сдвиг и кручение. 19

2.1. Основные понятия. 19

2.2. Задание на расчетно-графическую работу № 2. 20

2.3. Пример выполнения расчетно-графической работы № 2. 21

2.4. Варианты расчетных схем.. 24

3. Изгиб. 28

3.1. Основные понятия. 28

3.2. Задание на расчетно-графическую работу № 3. 30

3.3. Пример выполнения расчетно-графической работы № 3. 30

3.4. Варианты расчетных схем.. 34

Библиографический список. 42

РАСТЯЖЕНИЕ И СЖАТИЕ

Основные понятия

Растяжение (сжатие) – такой вид нагружения, при котором в поперечных сечениях бруса возникает только продольная сила N. При растяжении продольная сила направлена от сечения, при сжатии – к сечению.

На растяжение (сжатие) работают тросы, тяги приводов управления, шатуны, болты и многие другие детали.

Как показывает опыт, плоские поперечные сечения, перпендикулярные оси бруса, остаются плоскими и перпендикулярными к его оси при растяжении или сжатии (рис. 1.1). Это положение называют гипотезой плоских сечений. Из этой гипотезы следует, что напряжение во всех точках поперечного сечения одинаково, а значит, его можно найти как отношение внутренней силы N к площади поперечного сечения А.

Рис. 1.1

В поперечном сечении I–I при растяжении (сжатии) возникает только нормальное напряжение s, так как сила N перпендикулярна плоскости сечения:

. (1.1)

Под действием растягивающей силы (рис. 1.2) происходит удлинение бруса в продольном направлении и одновременное сужение в поперечном направлении.

Рис. 1.2

Абсолютное удлинение бруса:

. (1.2)

Относительное удлинение (относительная продольная деформация):

.(1.3)

Абсолютное сужение:

. (1.4)

Относительное сужение (относительная поперечная деформация):

. (1.5)

При растяжении абсолютная и относительная продольные деформации – величины положительные, поперечная деформация – величина отрицательная (так как ). При сжатии, наоборот, поперечная деформация – положительна, продольная – отрицательна.

Как показывает опыт, продольная и поперечная деформации связаны прямопропорциональной зависимостью:

, (1.6)

где m – коэффициент поперечной деформации (коэффициент Пуассона) – физическая постоянная материала, характеризующая его упругие свойства.

Величина коэффициента Пуассона определяется опытным путем. Его значения для разных материалов лежат в пределах . Для большинства сталей m = 0,3.

Для большинства материалов в определенных пределах справедлив закон Гука. Применительно к растяжению (сжатию) закон Гука формулируется так: нормальное напряжение при растяжении (сжатии) прямопропорционально относительной продольной деформации:

, (1.7)

где Емодуль упругости (модуль Юнга) – физическая постоянная, характеризующая жесткость материала. Для сталей E = 2 × 105 МПа.

Подставим в формулу (1.7) зависимости для определения напряжения (1.1) и деформаций (1.3). Получим

,

откуда

. (1.8)

По формуле (1.8) определяют абсолютное удлинение (укорочение) бруса. Произведение EA называется жесткостью при растяжении (сжатии).

1.2. Построение эпюр продольных сил, нормальных напряжений
и осевых перемещений

Для проведения расчетов на прочность и жесткость необходимо знать, как изменяются продольные силы, нормальные напряжения и осевые перемещения по длине бруса. С этой целью строят специальные графики, называемые эпюрами. Рассмотрим построение эпюр на следующем примере.

Читайте также:  Лечение при растяжении связок локтя

Пусть ступенчатый брус с площадью поперечного сечения А в правой части и 2А – в левой нагружен осевыми силами F и 4F (рис. 1.3, а). Последовательность расчета бруса такова:

1. Разбиваем брус на участки, границами которых являются точки приложения сосредоточенных сил и места изменения поперечного сечения.

2. Методом сечений на каждом участке определяем продольную силу N. Расчет начинаем со свободного конца бруса. Разрежем третий участок произвольным поперечным сечением и отбросим левую часть. Покажем оставшуюся часть бруса и заменим действие отброшен-ной части продольной силой N3 (рис. 1.3, б).

Составляем уравнение равновесия:

, , .

Таким образом, третий участок испытывает сжатие ( ). По аналогии на втором и первом участках имеем

, ,

т. е. первые два участка испытывают растяжение.

s

Для построения эпюры продольных сил (рис. 1.3, д) проводим нулевую линию 0–0 параллельно оси бруса. Будем откладывать положительные величины вверх, а отрицательные – вниз от нулевой линии. На первом участке , т. е. первые два участка испытывают
растяжение. Поскольку сечение было сделано произ-вольно, можно утверждать, что в любом сечении на первом участке , т. е. эпюра имеет вид прямо-угольника, высота которого в выбранном масштабе равна силе 3F и отложена вверх от нулевой линии.

Рис. 1.3

По аналогии строится эпюра на втором и третьем участках.

3. Находим нормальное напряжение, возникающее в поперечных сечениях бруса на каждом участке:

.

На первом участке продольная сила N1 = 3F, площадь поперечного сечения – 2А, поэтому

.

На втором и третьем участках имеем

, .

Откладывая от нулевой линии найденные значения в масштабе, строим эпюру нормальных напряжений (рис. 1.3, е). Из эпюры видим, в частности, что максимальное напряжение возникает на втором участке.

4. Вычисляем осевые перемещения Δ. В заделке перемещение отсутствует (Δ = 0), поэтому расчеты начнем с заделки. В начале первого участка (z = 0) Δ0 = 0. В конце первого участка (z = 2a) перемещение будет равно удлинению бруса на этом участке, которое найдем по формуле (1.8):

,

.

В конце второго участка (z = 3a) перемещение будет складываться из перемещения правого конца первого участка и удлинения второго участка:

.

По аналогии на третьем участке (z = 4a):

.

В промежуточных точках участков перемещения определяются точками прямых, соединяющих значения Δ на границах участков, так как удлинение прямопропорционально расстоянию до сечения. С учетом этого строим эпюру осевых перемещений (рис. 1.3, ж). Из эпюры, в частности, видно, что свободный конец бруса переместится вправо (знак «+») на величину

Иногда производится расчет по условию жесткости, в соответствии с которым максимальное перемещение сравнивается с допускаемым значением осевого перемещения [Δ]: .

Условие прочности при растяжении (сжатии)

При расчете на прочность по допускаемым напряжениям считается, что прочность обеспечена, если максимальное возникающее в нем напряжение не превышает допускаемого напряжения, поэтому при растяжении (сжатии) условие прочности имеет следующий вид:

, (1.9)

здесь

или

где sТ – предел текучести; sВ– предел прочности; [n] – заданный запас прочности.

Условие прочности позволяет решать три типа задач:

1. Определение необходимых размеров поперечного сечения бруса.

Из неравенства (1.9) находится необходимая площадь поперечного сечения бруса:

.

Если сечение бруса – круг, то, зная площадь сечения, находят его диаметр; если сечение – прямоугольник, то по заданному соотношению сторон находят их размеры. Сечение бруса может быть стандартным профилем (уголок, двутавр, швеллер), в этом случае по найденной площади сечения находят соответствующий профиль по ГОСТам сортамента проката.

2. Определение безопасной нагрузки для бруса.

Из условия прочности (1.9) допустимое значение продольной силы, возникающей в брусе, удовлетворяет следующему условию:

.

По найденному значению Ν определяется и безопасная внешняя осевая нагрузка F. Если продольная сила постоянна по длине бруса, то F = Ν.

3. Проверка прочности бруса.

По заданным нагрузкам и размерам бруса определяется максимальное напряжение, возникающее в нем, и сравнивается с допустимым. Расхождение этих величин характеризует недогрузку или перегрузку бруса:

.

Рекомендуется, чтобы эта величина лежала в пределах ± 5 %.

Если материал бруса по-разному сопротивляется растяжению и сжатию, то проверку прочности ведут отдельно для растянутых и сжатых участков:

, .

Задание на расчетно-графическую работу № 1

Расчетно-графическая работа № 1 по теме «Растяжение и сжатие» включает две задачи: подбор сечений статически определимого бруса из хрупкого материала (чугуна) и определение безопасной нагрузки для статически определимого бруса.

Читайте также:  Задачи сопротивление материалов решение задачи на растяжение сжатие

Задача 1. Для чугунного бруса построить эпюру продольных сил. Из расчета на прочность подобрать размеры круглого и квадратного поперечных сечений участков бруса.

Вариант I II III IV V VI VII VIII IX X
F, кH
sВР, МПа
sВС, МПа
[n] 2,5 3,0 3,5 4,0 3,5 2,5 3,0 3,5 4,0 3,5

Варианты расчетных схем к задаче 1 приведены на с. 13–15.

Задача 2. Для стального бруса построить эпюры продольных сил, нормальных напряжений и осевых перемещений. Из расчета на прочность по допускаемым напряжениям определить безопасное значение силы F. Вычислить перемещение точки приложения этой силы.

Вариант I II III IV V VI VII VIII IX X
A, мм2
l, мм
[s], МПа

Варианты расчетных схем к задаче 2 приведены на с. 16–18.

Дата добавления: 2017-02-11; просмотров: 4258 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2021 lektsii.org — Контакты — Последнее добавление

Источник

Условие прочности при растяжении (сжатии) выражается неравенством:

где [σ] – допускаемые напряжения, определяются как:

n – коэффициент запаса прочности, устанавливаемый нормативными документами.

Условие прочности позволяет решать три типа задач:

1. Проверка прочности (проверочный расчет)

2. Подбор сечения (проектировочный расчет)

3. Определение грузоподъемности (допускаемой нагрузки)

38. Допускаемое напряжение

Допускаемое (допустимое) напряжение — это значение напряжения, которое считается предельно приемлемым при вычислении размеров поперечного сечения элемента, рассчитываемого на заданную нагрузку.

Допускаемые напряжения либо предписываются компетентной инстанцией, либо выбираются конструктором, хорошо знающим свойства материала и условия его применения. Допускаемым напряжением ограничивается максимальное рабочее напряжение конструкции.

39. Закон Гука для сдвига.

Установлено: касательные напряжения пропорциональны углу сдвига в определенных пределах упругой деформации сдвига. Соотношение — формула закона Гука при сдвиге.

Коэффициент пропорциональности G в формуле закона Гука при сдвиге — модуль сдвига. Модуль сдвига измеряется в МПа, кН/см2, кгс/см2, кгс/мм2. Угол сдвига –безразмерная величина.

Модуль сдвига (G) – это физическая постоянная для материала, характеризующая жесткость при сдвиге. Значение модуля сдвига (G) может быть определено экспериментально.

40. Крутящие моменты и их эпюры.

Крутящий момент, возникающий в поперечном сечении стержня, определяется методом сечений. Крутящий момент равен алгебраической сумме скручивающих моментов, приложенных к любой из частей стержня. Эпюра крутящих моментов – это график, показывающий изменения крутящего момента по длине вала .

Правило знаков для эпюры крутящих моментов

При построении эпюры крутящих моментов используется правило знаков:

Скручивающий момент, вращающий рассматриваемую часть стержня против хода часовой стрелки при взгляде на поперечное сечение, вызывает в этом сечении положительный крутящий момент, направленный по ходу часовой стрелки, противодействуя скручивающему моменту.

41. Условие прочности при кручении

Условие прочности при кручении: прочность вала считается обеспеченной, если наибольшие касательные напряжения, возникающие в его опасном поперечном сечении, не превышают допускаемых напряжений на кручение:

Формула служит для проверочного расчета вала на прочность.

Допускается незначительное (до 5 %) превышение расчетного напряжения над допускаемым напряжением .

При проектировочном расчете требуемый полярный момент сопротивленияопределяется по формуле условия прочности при кручении:

.

Для вала постоянного диаметра опасным сечением при кручении является сечение, в котором возникает наибольший крутящий момент. Если сечение вала не постоянно по длине, может оказаться, что наибольшие касательные напряжения возникают не там, где крутящий момент максимален. Следовательно, в этом случае вопрос об опасном сечении должен быть исследован дополнительно.

Допускаемое напряжение :

для пластичных материалов назначается в зависимости от предела текучести ( ) при кручении (сдвиге):

.

для хрупких материалов назначается в зависимости от предела прочности:

.

42. Понятие о расчете на жесткость при кручении.

Источник

max = | | [ ]

15. Центральное растяжение и сжатие . Условие прочности. Три типа задач при центральном растяжении (сжатии).

Условие прочности позволяет решать три типа задач:

1. Проверка прочности (проверочный расчет)

2. Подбор сечения (проектировочный расчет)

3. Определение грузоподъемности (допускаемой нагрузки)

16. Учёт собственного веса при центральном растяжении сжатии. Понятие о предельной длине.
Учет собственного веса при растяжении (сжатии)

Деформации при центральном растяжении и сжатии. Закон Гука.

Зако́н Гу́ка — утверждение, согласно которому деформация, возникающая в упругом теле (пружине, стержне, консоли, балке и т. п.), пропорциональна приложенной к этому телу силе.

Читайте также:  Растяжение связок голеностопа время восстановления

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Простейшим видом деформации являются деформации растяжения и сжатия. При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:

Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м).

Коэффициент Пуассона.

Коэффициент Пуассона (коэффициент поперечной деформации) — показывает зависимость между продольными и поперечными деформациями элемента, характеризует упругие свойства материала.

Обозначается строчными греческими буквами ν или μ и является безразмерной величиной.

Определяется отношением относительных поперечных εпоп и продольных εпр деформаций бруса (элемента):

19.Эксперементальные исследования механических свойств материалов. Диаграмма растяжения стали.

Диаграмма растяжения показывает зависимость удлинения образца от продольной растягивающей силы.

Ее построение является промежуточным этапом в процессе определения механических характеристик материалов (в основном металлов).

Диаграмму растяжения материалов получают экспериментально, при испытаниях образцов на растяжение.

Для этого образцы стандартных размеров закрепляют в специальных испытательных машинах (например УММ-20 или МИ-40КУ) и растягивают до их полного разрушения (разрыва). При этом специальные приборы фиксируют зависимость абсолютного удлинения образца от прикладываемой к нему продольной растягивающей нагрузки и самописец вычерчивает кривую характерную для данного материала.

На рис. 1 показана диаграмма для малоуглеродистой стали. Она построена в системе координат F-Δl, где:

F — продольная растягивающая сила, [Н];

Δl — абсолютное удлинение рабочей части образца, [мм]

Рис. 1 Диаграмма растяжения стального образца

Как видно из рисунка, диаграмма имеет четыре характерных участка:

I — участок пропорциональности;

II — участок текучести;

III — участок самоупрочнения;

IV — участок разрушения.

20.Эксперементальные исследования механических свойств материалов. Повторные нагрузки и разгрузки. Явление наклепа.

Наклепом называют процесс повышения прочности и изменения упругих свойств металлических элементов путем пластического деформирования.

Если при испытании на растяжение стальной образец разгрузить не доводя до разрушения (точка М на рис.1), то в процессе разгрузки зависимость между силой F и удлинением Δl изобразится прямой MN. Опыт показывает, что эта прямая параллельна прямой ОА. При разгрузке деформация полностью не исчезает. Она уменьшается на величину упругой части удлинения (отрезок равный Δlу).

Отрезок ОN диаграммы растяжения представляет собой остаточное удлинение (отрезок равный Δlост). Его называют также пластическим удлинением, а соответствующую ему деформацию – пластической деформацией. Таким образом,

Δl = Δlу + Δlост

Соответственно

ε = εу + εост

Если образец был нагружен в пределах участка ОА и затем разгружен, то удлинение будет чисто упругим, и Δlост=0.

Рис. 1

При повторном нагружении образца диаграмма возвращается по прямой NM и далее проходит по кривой MDE (рис. 1) так, как будто промежуточной разгрузки и не было.

Следовательно, при повторных нагружениях образца, предварительно растянутого до возникновения в нём напряжений, больше предела текучести, предел пропорциональности повышается до того уровня, которого достигли напряжения при предшествующей нагрузке. Если между разгрузкой и повторным нагружением был перерыв, то предел пропорциональности повышается ещё больше.

Следует отметить, что диаграмма NMDE, получаемая при повторном нагружении, не имеет площадки текучести, поэтому для образца, претерпевшего разгрузку и повторное нагружение, определяется условный предел текучести (σ0.2),который, очевидно, выше предела текучести при первичном нагружении.

Явление повышения предела пропорциональности и снижения пластичности материала при повторных нагружениях называется наклёпом.

Наклёп во многих случаях является нежелательным явлением, так как наклёпанный материал становится более хрупким. Поэтому наклёп часто снимают отжигом – нагревом до определённой температуры.

В целом ряде случаев наклёп полезен и его создают искусственно, например, в деталях подвергающихся воздействию переменных нагрузок и при производстве арматуры.

Читайте также:

Рекомендуемые страницы:

©2015-2021 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16
Нарушение авторских прав и Нарушение персональных данных

Источник