Удлинение стержня при растяжении формула
Размеры растянутого стержня меняются в зависимости от величины приложенных сил. Если до нагружения стержня его длина была равна то после нагружения она станет равной (рис. 1.6). Величину называют абсолютным удлинением стержня.
Рис. 1.8
Будем считать, что абсолютное удлинение и деформации связаны только с напряжениями, возникающими в стержне. В действительности имеются и другие факторы, влияющие на деформации. Так, деформации зависят от температуры и времени действия нагрузки. Неупругие деформации зависят от “истории” нагружения, т.е. от порядка возрастания и убывания внешних сил. Пока, однако, этих вопросов мы касаться не будем.
Если стержень нагружен только силой Р, то напряженное состояние является однородным и все участки растянутого стержня находятся в одинаковых условиях; деформация по оси стержня остается одной и той же, равной своему среднему значению по длине
Эта величина называется относительным удлинением стержня.
Если стержень нагружен сосредоточенной силой Р и распределенными силами (наиболее общий случай), то относительное удлинение не будет постоянным по длине стержня. Получим выражение для относительного удлинения стержня, рассматривая элемент стержня между плоскостями и
до и после нагружения (см. рис. 1.6). Если обозначить перемещение плоскости АА элемента стержня через и, то плоскость будет иметь перемещение, равное и где — дополнительное перемещение из-за растяжения элемента стержня. Тогда относительное удлинение элемента будет равно
Заметим, что вследствие равномерного распределения напряжений по сечению удлинения для всех элементарных отрезков (см. рис. 1.6), взятых на участке оказываются одинаковыми. Следовательно, если концы отрезков до нагружения образуют плоскость, то и после нагружения стержня они образуют плоскость, но смещенную вдоль оси стержня. Это положение может быть взято в основу толкования механизма растяжения и сжатия и трактуется как гипотеза плоских сечений (гипотеза Бернулли). Если эту гипотезу принять как основную, то тогда из нее, уже как следствие, вытекает высказанное ранее предположение о равномерности распределения напряжений в поперечном сечении.
В пределах малых удлинений для подавляющего большинства материалов справедлив закон Гука, который устанавливает прямую пропорциональность между напряжениями и деформациями:
Величина Е представляет собой коэффициент пропорциональности, называемый модулем упругости первого рода. Модуль упругости является физической константой материала и определяется экспериментально. Величина Е измеряется в тех же единицах, что и а, т.е. в мегапаскалях. Вместе с тем, поскольку модуль упругости может иметь довольно большие числовые значения, его предпочтительнее измерять не в мега-, а в гигапаскалях:
Для наиболее часто применяемых материалов модуль упругости Е имеет следующие значения,
Закон Гука представляет собой простейшую и очевидную аппроксимацию наблюдаемой в опытах зависимости удлинения от напряжения. Естественно, что точность этой аппроксимации определяется в первую очередь тем, сколь широкий диапазон изменения напряжения имеется в виду. Всегда можно подобрать достаточно малый интервал напряжений, чтобы в его пределах функцию можно было бы с заданной точностью рассматривать как линейную. И конечно, для разных материалов это выглядит по-разному. Для некоторых материалов, таких как, например, сталь, закон Гука соблюдается с высокой степенью точности в широких пределах изменения напряжений. Для отожженной меди, для чугуна этот интервал изменения напряжений существенно меньше. В тех случаях, когда закон Гука явно не соблюдается, деформацию задают в виде некоторой нелинейной функции от напряжения с таким расчетом, чтобы эта функция отвечала кривой, полученной при испытании материала.
Вернемся к выражению (1.4) и заменим в нем а на на Тогда получим
или
В результате получаем систему, состоящую из двух уравнений: первого уравнения системы (полагая ) и уравнения (1.5), которая позволяет определить напряженно-деформированное состояние прямолинейного стержня, нагруженного осевыми силами:
Из первого уравнения системы (1.6) находим осевое усилие а из второго — Получаемые выражения для и и будут содержать две произвольные постоянные, определяемые из двух краевых условий: при
Абсолютное удлинение стержня переменного сечения на длине будет равно
В том случае, когда стержень нагружен только по концам, нормальная сила не зависит от Если, кроме того, стержень имеет постоянные размеры поперечного сечения то из выражения (1.5) получаем
При решении многих практических задач возникает необходимость наряду с удлинениями, обусловленными напряжением учитывать также удлинения, связанные с температурным воздействием. В этом случае пользуются способом
наложения и деформацию с рассматривают как сумму силовой и чисто температурной деформации:
где а — коэффициент температурного расширения материала.
Для однородного стержня, нагруженного по концам и равномерно нагретого, получаем
Таким образом, силовая и температурная деформации рассматриваются как независимые. Основанием этому служит экспериментально установленный факт, что модуль упругости Е при умеренном нагреве слабо меняется с температурой, точно так же как и а практически не зависит от . Для стали это имеет место до температуры порядка . При более высоких температурах необходимо учитывать зависимость Е от
Рассмотрим примеры определения напряжений и перемещений в некоторых простейших случаях растяжения и сжатия.
Пример 1.1. Требуется выявить закон изменения нормальных сил, напряжений и перемещений по длине ступенчатого стержня, нагруженного на конце силой Р (рис. 1.7, а), определить числовые значения наибольшего напряжения и наибольшего перемещения, если Материал — сталь, Поскольку сила Р велкка, собственный вес стержня можно не учитывать.
Рис. 1.7
Из условий равновесия любой отсеченной части стержня вытекает, что нормальная сила в каждом сечении стержня равна внешней силе Р. Построим график изменения силы вдоль оси стержня. Графики подобного рода называются в сопротивлении материалов эпюрами. Они дают наглядное представление о законах изменения различных исследуемых величин. В данном случае эпюра нормальной силы представлена на рис. 1.7, б прямоугольником, поскольку На рисунке эпюра заштрихована линиями, которые проведены параллельно откладываемым на графике значениям . В данном случае значение силы откладывают вверх, поэтому штриховка проведена вертикально.
Для того чтобы получить эпюру напряжений а, надо ординаты эпюры изменить обратно пропорционально величине (рис. 1.7, в). Большее значение а равно
Определим перемещение и каждого сечения стержня по направлению силы Р. Перемещение сечения равно удлинению отрезка длиной . Следовательно, согласно формуле (1.6), . Таким образом, на участке изменения от нуля до I перемещение и пропорционально z (рис. 1.7, а). На втором участке стержня перемещение Зависимость и от также будет линейной. Наибольшее перемещение имеет торцевое сечение стержня: мм.
Пример 1.2. Построить эпюры нормальных сил, напряжений и перемещений для свободно подвешенного цилиндрического стержня, нагруженного силами собственного веса (рис. 1.8, о). Длина стержня площадь поперечного сечения плотность материала у.
Рис. 1.8
Нормальная сила в сечении z равна весу нижележащей части стержня: Следовательно, нормальная сила пропорциональна г. Эпюру в данном случае штрихуют горизонтальными линиями, поскольку
значения откладывают в горизонтальном налравденхн (рис. 1.8, в). Наг пряжение в сечении равно (см. рис. 1.8, в).
Перемещение и в сечении z равно удлинению верхнего участка стержня. Согласно формуле (1.5),
Таким образом, закон изменения и изображается квадратичной функцией 2. Наибольшее перемещение «шах имеет нижнее торцевое сечение (рис. 1.8, г):
Пример 1.3. Колонна (рис. 1.9, а) нагружена силой Р и силами собственного веса. Требуется подобрать такой закон изменения площади поперечного сечения чтобы напряжения во всех сечениях были одинаковы и равны Построить эпюры нормальных сил, напряжений и перемещений.
Рис. 1.9
На расстоянии от торца нормальная сжимающая сила равна
По условию задачи
откуда
Дифференцируя обе части этого равенства по z, получим или После интегрирования находим
При следовательно, и тогда искомый закон изменения площади принимает вид
Построение эпюр удобнее всего начинать с эпюры напряжения которое вдоль оси колонны по условию не меняется (рис. 1.9, б). Поскольку напряжение постоянно, то постоянным будет и относительное удлинение е. Поэтому перемещение и возрастает пропорционально расстоянию от основания колонны (рис 1.9, в).
Нормальная сила в сечении z равна Эпюра показана на рис. 1.9, г.
Рассмотренная задача относится к числу часто встречающихся в сопротивлении материалов задач на отыскание условий равнопрочности. Если напряжение в некотором теле (в данном случае в колонне) будет постоянно для всех точек объема, такую конструкцию называют равнопрочной. В подобных конструкциях материал используется наиболее эффективно.
Пример 1.4. Кронштейн нагружен на конце силой Р (рис. 1.10, а). Требуете подобрать поперечное сечение стержней АВ и с таким расчетом, чтобы возникающие в них напряжения имели одинаковую заданную величину а. При этом угол а должен быть выбран из условия минимального веса конструкции при заданном вылете кронштейна
Из условий равновесия узла В (рис. 1.10, б) находим нормальные силы в стержнях: .
Далее определяем площади поперечного сечения стержней по величине заданного напряжения и:
Рис. 1.10
Вес конструкции кронштейна пропорционален объему: Подставляя длины и площади стержней, находим
Величина V имеет минимум при .
Источник
Растяжение (сжатие) – это такой вид нагружения стержня, при котором в его поперечном сечении возникает внутренняя продольная сила Ν, действующая вдоль центральной оси z.
Продольная сила Ν – это равнодействующая всех внутренних нормальных сил в сечении. Для вычисления продольной силы применяется метод сечений.
Продольная сила Ν численно равна алгебраической сумме проекций всех сил, действующих по одну сторону от рассматриваемого сечения, на продольную ось бруса.
Правило знаков для продольной силы Ν: при растяжении продольная сила положительна, при сжатии – отрицательна.
График изменения продольных сил по длине стержня называется эпюрой. Эпюра N строится методом сечений на характерных участках бруса. Строится эпюра для использования ее при расчете бруса на прочность. Она дает возможность найти наибольшие значения продольных сил и положение сечений, в которых они возникают.
При растяжении (сжатии) возникают только нормальные напряжения. Согласно гипотезе Я. Бернулли (или гипотеза плоских сечений) в поперечных сечениях, удаленных от места приложения нагрузок, нормальные напряжения распределяются по сечению практически равномерно, а сами сечения, перпендикулярные к оси стержня z, остаются плоскими в процессе нагружения.
Нормальные напряжения в сечении при растяжении (сжатии) вычисляются по формуле
где А – площадь поперечного сечения.
Правило знаков для σ совпадает с правилом знаков для N.
В наклонном сечении, нормаль к которому составляет угол α с осью стержня z,
При растяжении в продольном направлении стержень удлиняется, а его поперечные размеры уменьшаются, при сжатии, напротив, в продольном направлении стержень укорачивается, а его поперечные размеры увеличиваются; Δℓ — абсолютное удлинение или укорочение участка стержня длиной ℓ, Δb – абсолютная поперечная деформация.
Относительное удлинение или укорочение участка стержня длиной ℓ, называемое линейной деформацией, определяется следующим образом
ε=Δℓ/ℓ.
Экспериментально установлено, что в определенной области нагрузок при упругом поведении материала между нормальными напряжениями и линейными деформациями существует линейная зависимость (закон Гука для напряжений)
σ=εЕ,
где Е – модуль продольной упругости или модуль Юнга, это физическая const. Для каждого из материалов величина модуля упругости имеет свое значение:
сталь, Е = 2.105 МПа,
медь, Е = 1.105 МПа,
алюминий, Е = 0,7.105 МПа.
Значение модуля упругости устанавливается экспериментально.
Согласно закону Гука (данную запись называют законом Гука для деформаций)
Δℓ=Νℓ/ЕА
Произведение ЕА – называется жесткостью стержня при растяжении – сжатии.
Перемещение произвольного сечения ступенчатого стержня
w=∑Δℓi
Относительная поперечная деформация:
ε′=Δb/b
где b – поперечный размер стержня.
Эксперименты также показывают, что в упругой стадии деформирования между продольной и поперечной деформациями существует взаимосвязь
μ =│ε′⁄ε│ — const,
где μ — коэффициент Пуассона, берется по модулю ,поскольку у продольной и поперечной деформации разные знаки (при растяжении продольные волокна увеличиваются, а поперечные уменьшаются в размере).
Для твердых материалов имеет значения коэффициент Пуассона
0≤μ ≤0,5
Изменение температуры стержня вызывает его удлинение (при нагревании) или укорочение (при охлаждении)
где — a- коэффициент линейного температурного расширения; Δtº=(tºк-tºн) — изменение температуры между значениями начальным (tºн) и конечным (tºк).
Статически неопределимыми называют системы, имеющие лишние связи – внешние или внутренние.
Для определения внутренних усилий в таких системах недостаточно рассматривать только уравнения равновесия.
В этом случае требуются дополнительные уравнения, число которых равно количеству лишних связей. Дополнительные уравнения составляются на основе анализа картины деформирования системы и использования законов деформирования ее элементов.
Алгоритм решения подобных задач включает следующее:
1) Статическая часть. Составляются уравнения равновесия с включением неизвестных усилий, действующих по направлению лишних связей.
2) Геометрическая часть. Составляются уравнения, описывающие взаимосвязь перемещений характерных точек, удлинений и укорочений отдельных стержней между собой.
3) Физическая связь. Записываются законы деформирования отдельных стержней системы.
Порядок расчета статически неопределимых брусьев
- Задаться направлениями возможных опорных реакций и составить уравнение статики для всей системы в целом.
- Определить степень статической неопределимости и использовать метод сечений с целью выразить неизвестные усилия через неизвестные опорные реакции. При этом неизвестные продольные силы (N) следует предполагать положительными и поэтому направлять «от сечения».
- Сформулировать условие совместности деформаций участков бруса.
- В процессе превращения условия совместности в уравнение совместности деформаций различий в характере деформаций участков не учитывать.
Порядок расчета статически неопределимых шарнирно-стержневых систем
- Задаться направлениями опорных реакций, но уравнений равновесия для всей системы не составлять, а сразу использовать метод сечений и составить уравнения статики для выделенной части системы.
- Определить степень статической неопределимости как разницу между количеством всех неизвестных, оказавшихся в уравнениях статики, и числом самих этих уравнений.
- Рассмотреть (изобразить) любую возможную картину деформаций системы и из ее анализа сформулировать условия совместности деформаций стержней системы (столько, какова степень статической неопределимости).
- В процессе преобразования условий совместности в уравнения совместности деформаций обязательно учитывать различие в характере деформаций стержней (т.е. вводить удлинение со знаком «плюс», а укорочение со знаком «минус») в соответствии с той картиной деформации, которую мы рассматриваем.
Источник
Иметь представление о продольных и поперечных деформациях и их связи.
Знать закон Гука, зависимости и формулы для расчета напряжений и перемещений.
Уметь проводить расчеты на прочность и жесткость статически определимых брусьев при растяжении и сжатии.
Деформации при растяжении и сжатии
Рассмотрим деформацию бруса под действием продольной силы F (рис. 21.1).
В сопротивлении материалов принято рассчитывать деформации в относительных единицах:
Между продольной и поперечной деформациями существует зависимость
где μ— коэффициент поперечной деформации, или коэффициент Пуассона, —характеристика пластичности материала.
Закон Гука
В пределах упругих деформаций деформации прямо пропорциональны нагрузке:
где F — действующая нагрузка; к — коэффициент. В современной форме:
Получим зависимость
где Е — модуль упругости, характеризует жесткость материала.
В пределах упругости нормальные напряжения пропорциональны относительному удлинению.
Значение Е для сталей в пределах (2 – 2,1) • 105МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:
Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы.
Относительное удлинение
В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:
где
Δl — абсолютное удлинение, мм;
σ — нормальное напряжение, МПа;
l — начальная длина, мм;
Е — модуль упругости материала, МПа;
N — продольная сила, Н;
А — площадь поперечного сечения, мм2;
Произведение АЕ называют жесткостью сечения.
Выводы
1. Абсолютное удлинение бруса прямо пропорционально величине продольной силы в сечении, длине бруса и обратно пропорционально площади поперечного сечения и модулю упругости.
2. Связь между продольной и поперечной деформациями зависит от свойств материала, связь определяется коэффициентом Пуассона, называемом коэффициентом поперечной деформации.
Коэффициент Пуассона: у стали μ от 0,25 до 0,3; у пробки μ = 0; у резины μ = 0,5.
3. Поперечные деформации меньше продольных и редко влияют на работоспособность детали; при необходимости поперечная деформация рассчитывается через продольную.
где Δа — поперечное сужение, мм;
ао — начальный поперечный размер, мм.
4. Закон Гука выполняется в зоне упругих деформаций, которая определяется при испытаниях на растяжение по диаграмме растяжения (рис. 21.2).
При работе пластические деформации не должны возникать, упругие деформации малы по сравнению с геометрическими размерами тела. Основные расчеты в сопротивлении материалов проводятся в зоне упругих деформаций, где действует закон Гука.
На диаграмме (рис. 21.2) закон Гука действует от точки 0 до точки 1.
5. Определение деформации бруса под нагрузкой и сравнение ее с допускаемой (не нарушающей работоспособности бруса) называют расчетом на жесткость.
Примеры решения задач
Пример 1. Дана схема нагружения и размеры бруса до деформации (рис. 21.3). Брус защемлен, определить перемещение свободного конца.
Решение
1. Брус ступенчатый, поэтому следует построить эпюры продольных сил и нормальных напряжений.
Делим брус на участки нагружения, определяем продольные силы, строим эпюру продольных сил.
2. Определяем величины нормальных напряжений по сечениям с учетом изменений площади поперечного сечения.
Строим эпюру нормальных напряжений.
3. На каждом участке определяем абсолютное удлинение. Результаты алгебраически суммируем.
Примечание. Балка защемлена, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со свободного конца (справа).
1. Два участка нагружения:
участок 1:
растянут;
участок 2:
2.
Три участка по напряжениям:
Пример 2. Для заданного ступенчатого бруса (рис. 2.9, а) построить эпюры продольных сил и нормальных напряжений по его длине, а также определить перемещения свободного конца и сечения С, где приложена сила Р2. Модуль продольной упругости материала Е = 2,1 • 105 Н/’мм3.
Решение
1. Заданный брус имеет пять участков /, //, III, IV, V (рис. 2.9, а). Эпюра продольных сил показана на рис. 2.9, б.
2. Вычислим напряжения в поперечных сечениях каждого участка:
для первого
для второго
для третьего
для четвертого
для пятого
Эпюра нормальных напряжений построена на рис. 2.9, в.
3. Перейдем к определению перемещений поперечных сечений. Перемещение свободного конца бруса определяется как алгебраическая сумма удлинений (укорочений) всех его участков:
Подставляя числовые значения, получаем
4. Перемещение сечения С, в котором приложена сила Р2, определяется как алгебраическая сумма удлинений (укорочений) участков ///, IV, V:
Подставляя значения из предыдущего расчета, получаем
Таким образом, свободный правый конец бруса перемещается вправо, а сечение, где приложена сила Р2, — влево.
5. Вычисленные выше значения перемещений можно получить и другим путем, пользуясь принципом независимости действия сил, т. е. определяя перемещения от действия каждой из сил Р1; Р2; Р3 в отдельности и суммируя результаты. Рекомендуем учащемуся проделать это самостоятельно.
Пример 3. Определить, какое напряжение возникает в стальном стержне длиной l = 200 мм, если после приложения к нему растягивающих сил его длина стала l1 = 200,2 мм. Е = 2,1*106 Н/мм2.
Решение
Абсолютное удлинение стержня
Продольная деформация стержня
Согласно закону Гука
Пример 4. Стенной кронштейн (рис. 2.10, а) состоит из стальной тяги АВ и деревянного подкоса ВС. Площадь поперечного сечения тяги F1 = 1 см2, площадь сечения подкоса F2 = 25 см2. Определить горизонтальное и вертикальное перемещения точки В, если в ней подвешен груз Q = 20 кН. Модули продольной упругости стали Eст = 2,1*105 Н/мм2, дерева Ед = 1,0*104 Н/мм2.
Решение
1. Для определения продольных усилий в стержнях АВ и ВС вырезаем узел В. Предполагая, что стержни АВ и ВС растянуты, направляем возникающие в них усилия N1 и N2 от узла (рис. 2.10, 6). Составляем уравнения равновесия:
откуда
Усилие N2 получилось со знаком минус. Это указывает на то, что первоначальное предположение о направлении усилия неверно — фактически этот стержень сжат.
2. Вычислим удлинение стальной тяги Δl1и укорочение подкоса Δl2:
где
Тяга АВ удлиняется на Δl1= 2,2 мм; подкос ВС укорачивается на Δl1= 7,4 мм.
3. Для определения перемещения точки В мысленно разъединим стержни в этом шарнире и отметим их новые длины. Новое положение точки В определится, если деформированные стержни АВ1 и В2С свести вместе путем их вращения вокруг точек А и С (рис. 2.10, в). Точки В1 и В2 при этом будут перемещаться по дугам, которые вследствие их малости могут быть заменены отрезками прямых В1В’ и В2В’, соответственно перпендикулярными к АВ1 и СВ2. Пересечение этих перпендикуляров (точка В’) дает новое положение точки (шарнира) В.
4. На рис. 2.10, г диаграмма перемещений точки В изображена в более крупном масштабе.
5. Горизонтальное перемещение точки В
Вертикальное
где составляющие отрезки определяются из рис. 2.10, г;
Подставляя числовые значения, окончательно получаем
При вычислении перемещений в формулы подставляются абсолютные значения удлинений (укорочений) стержней.
Контрольные вопросы и задания
1. Стальной стержень длиной 1,5 м вытянулся под нагрузкой на 3 мм. Чему равно относительное удлинение? Чему равно относительное сужение? (μ = 0,25.)
2. Что характеризует коэффициент поперечной деформации?
3. Сформулируйте закон Гука в современной форме при растяжении и сжатии.
4. Что характеризует модуль упругости материала? Какова единица измерения модуля упругости?
5. Запишите формулы для определения удлинения бруса. Что характеризует произведение АЕ и как оно называется?
6. Как определяют абсолютное удлинение ступенчатого бруса, нагруженного несколькими силами?
7. Ответьте на вопросы тестового задания.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Источник