Учет собственного веса при растяжении и сжатии решение задач
Подбор сечений с учетом собственного веса (при растяжении и сжатии).
При установлении внешних сил, растягивающих или сжимающих элементы конструкций, мы до сих пор игнорировали собственный вес этих элементов. Возникает вопрос, не вносится ли этим упрощением расчета слишком большая погрешность? В связи с этим подсчитаем величины напряжений и деформаций при учете влияния собственного веса растянутых или сжатых стержней.
Пусть вертикальный стержень (Рис.1, а) закреплен своим верхним концом; к нижнему его концу подвешен груз Р. Длина стержня l, площадь поперечного сечения F, удельный вес материала и модуль упругости Е. Подсчитаем напряжения по сечению АВ, расположенному на расстоянии от свободного конца стержня.
а) б)
Рис.1. Исходная расчетная схема бруса а) и б) равновесие нижней отсеченной части.
Рассечем стержень сечением АВ и выделим нижнюю часть длиной с приложенными к ней внешними силами (Рис.1, б) грузом Р и ее собственным весом . Эти две силы уравновешиваются напряжениями, действующими на площадь АВ от отброшенной части. Эти напряжения будут нормальными, равномерно распределенными по сечению и направленными наружу от рассматриваемой части стержня, т. е. растягивающими. Величина их будет равна:
Таким образом, при учете собственного веса нормальные напряжения оказываются неодинаковыми во всех сечениях. Наиболее напряженным, опасным, будет верхнее сечение, для которого достигает наибольшего значения l; напряжение в нем равно:
Условие прочности должно быть выполнено именно для этого сечения:
Отсюда необходимая площадь стержня равна:
От формулы, определяющей площадь растянутого стержня без учета влияния собственного веса, эта формула отличается лишь тем, что из допускаемого напряжения вычитается величина .
Чтобы оценить значение этой поправки, подсчитаем ее для двух случаев. Возьмем стержень из мягкой стали длиной 10 м; для него , а величина . Таким образом, для стержня из мягкой стали поправка составит т. е. около 0,6%. Теперь возьмем кирпичный столб высотой тоже 10 м; для него , а величина Таким образом, для кирпичного столба поправка составит , т.е. уже 15%.
Вполне понятно, что влиянием собственного веса при растяжении и сжатии стержней можно пренебрегать, если мы не имеем дела с длинными стержнями или со стержнями из материала, обладающего сравнительно небольшой прочностью (камень, кирпич) при достаточном весе. При расчете длинных канатов подъемников, различного рода длинных штанг и высоких каменных сооружений (башни маяков, опоры мостовых ферм) приходится вводить в расчет и собственный вес конструкции.
В таких случаях возникает вопрос о целесообразной форме стержня. Если мы подберем сечение стержня так, что дадим одну и ту же площадь поперечного сечения по всей длине, то материал стержня будет плохо использован; нормальное напряжение в нем дойдет до допускаемого лишь в одном верхнем сечении; во всех прочих сечениях мы будем иметь запас в напряжениях, т. е. излишний материал. Поэтому желательно так запроектировать размеры стержня, чтобы во всех его поперечных сечениях (перпендикулярных к оси) нормальные напряжения были постоянны,
Такой стержень называется стержнем равного сопротивления растяжению или сжатию. Если при этом напряжения равны допускаемым, то такой стержень будет иметь наименьший вес.
Возьмем длинный стержень, подверженный сжатию силой Р и собственным весом (Рис.2). Чем ближе к основанию стержня мы будем брать сечение, тем больше будет сила, вызывающая напряжения в этом сечении, тем большими придется брать размеры площади сечения. Стержень получит форму, расширяющуюся книзу. Площадь сечения F будет изменяться по высоте в зависимости от , т. е. .
Установим этот закон изменения площади в зависимости от расстояния сечения от верха стержня.
Рис.2. Расчетная схема бруса равного сопротивления
Площадь верхнего сечения стержня определится из условия прочности:
и
где допускаемое напряжение на сжатие; напряжения во всех прочих сечениях стержня также должны равняться величине
Чтобы выяснить закон изменения площадей по высоте стержня, возьмем два смежных бесконечно близких сечения на расстоянии от верха стержня; расстояние между сечениями ; площадь верхнего назовем , площадь же смежного .
Приращение площади при переходе от одного сечения к другому должно воспринять вес элемента стержня между сечениями. Так как на площади он должен вызвать напряжение, равное допускаемому , то определится из условия:
Отсюда:
После интегрирования получаем:
При площадь ; подставляя эти значения, имеем:
и
Отсюда
,
Если менять сечения точно по этому закону, то боковые грани стержня получат криволинейное очертание (Рис.2), что усложняет и удорожает работу. Поэтому обычно такому сооружению придают лишь приближенную форму стержня равного сопротивления, например в виде усеченной пирамиды с плоскими гранями. Приведенный расчет является приближенным. Мы предполагали, что по всему сечению стержня равного сопротивления передаются только нормальные напряжения; на самом деле у краев сечения напряжения будут направлены по касательной к боковой поверхности.
В случае длинных канатов или растянутых штанг форму стержня равного сопротивления осуществляют тоже приближенно, разделяя стержень по длине на ряд участков; на протяжении каждого участка сечение остается постоянным (Рис.3) получается так называемый ступенчатый стержень.
Рис.3. Эквивалентный ступенчатый брус с приближением к модели бруса равного сопротивления
Определение площадей … при выбранных длинах производится следующим образом. Площадь поперечного сечения первого нижнего участка будет по формуле равна:
Чтобы получить площадь поперечного сечения второго участка, надо нагрузить его внешней силой Р и весом первого участка:
Для третьего участка к внешней силе добавляются веса первого и второго участков. Подобным же образом поступают и для других участков.
Деформации при действии собственного веса.
При определении влияния собственного веса на деформацию при растяжении и сжатии стержней придется учесть, что относительное удлинение различных участков стержня будет переменным, как и напряжение . Для вычисления полного удлинения стержня постоянного сечения определим сначала удлинение бесконечно малого участка стержня длиной , находящегося на расстоянии от конца стержня (Рис.4).
Рис.4. Расчетная модель бруса с учетом собственного веса.
Абсолютное удлинение этого участка равно
Полное удлинение стержня равно:
Величина представляет собой полный вес стержня. Таким образом, для вычисления удлинения от действия груза и собственного веса можно воспользоваться прежней формулой:
подразумевая под S внешнюю силу и половину собственного веса стержня.
Что же касается деформаций стержней равного сопротивления, то, так как нормальные напряжения во всех сечениях одинаковы и равны допускаемым , относительное удлинение по всей длине стержня одинаково и равно
Абсолютное же удлинение при длине стержня l равно:
где обозначения соответствуют приведенным на рис.1.
Деформацию ступенчатых стержней следует определять по частям, выполняя подсчеты по отдельным призматическим участкам. При определении деформации каждого участка учитывается не только его собственный вес, но и вес тех участков, которые влияют на его деформацию, добавляясь к внешней силе. Полная деформация получится суммированием деформаций отдельных участков.
Дальше…
Источник
Задача. Определить напряжение в стальных стержнях, поддерживающих абсолютно жёсткую балку. Материал — сталь Ст3, α=60°, [σ]=160МПа.
- Схему вычерчиваем в масштабе. Нумеруем стержни.
В шарнирно-неподвижной опоре А возникают реакции RА и НА. В стержнях 1 и 2 возникают усилия N1 и N2. Применим метод сечений. Замкнутым разрезом вырежем среднюю часть системы. Жесткую балку покажем схематично — линией, усилия N1 и N2 направим от сечения.
Составляем уравнения равновесия
Количество неизвестных превышает количество уравнений статики на 1. Значит, система один раз статически неопределима, и для её решения потребуется одно дополнительное уравнение. Чтобы составить дополнительное уравнение, следует рассмотреть схему деформации системы. Шарнирно-неподвижная опора А остается на месте, а стержни деформируются под действием силы.
Схема деформаций
По схеме деформаций составим условие совместности деформаций из рассмотрения подобия треугольников АСС1и АВВ1. Из подобия треугольников АВВ1 и АСС1 запишем соотношение:
, где ВВ1=Δℓ1 (удлинение первого стержня)
Теперь выразим СС1 через деформацию второго стержня. Укрупним фрагмент схемы.
Из рисунка видно, что СС2 = СС1·cos (90º-α)= СС1·sinα.
Но СС2= Δℓ2 , тогда Δℓ2= СС1·sinα, откуда:
Превратим условие совместности деформации (4) в уравнение совместности деформации с помощью формулы Гука для деформаций. При этом обязательно учитываем характер деформаций (укорочение записываем со знаком «-», удлинение со знаком «+»).
Тогда уравнение совместности деформаций будет:
Сокращаем обе части на Е, подставляем числовые значения и выражаем N1 через N2
Подставим соотношение (6) в уравнение (3), откуда найдем:
N1 = 7,12кН (растянут),
N2 =-20,35кН (сжат).
Определим напряжения в стержнях.
Задача решена.
Расчет бруса с зазором. Для статически неопределимого стального ступенчатого бруса построить эпюры продольных сил, нормальных напряжений, перемещений. Проверить прочность бруса. До нагружения между верхним концом и опорой имел место зазор Δ=0,1 мм. Материал – сталь Ст 3, модуль продольной упругости Е=2·105 МПа, допускаемое напряжение [σ]=160МПа.
- После нагружения зазор закроется и реакции возникнут и в нижней, и в верхней опоре. Покажем их произвольно, это реакции RA и RВ. Составим уравнение статики.
∑у=0 RA — F1 + F2 — RВ=0
В уравнении 2 неизвестных, а уравнение одно, значит задача 1 раз статически неопределима, и для ее решения требуется 1 дополнительное уравнение.
Это уравнение совместности деформаций. В данном случае совместность деформаций участков бруса состоит в том, что изменение длины бруса (удлинение) не может превзойти величины зазора, т.е. Δℓ=Δ, это условие совместности деформации.
- Теперь разобьем брус на участки и проведем на них сечения – их 4 по количеству характерных участков. Каждое сечение рассматриваем отдельно, двигаясь в одном направлении – от нижней опоры вверх. В каждом сечении выражаем силу N через неизвестную реакцию. Направляем N от сечения.
Выпишем отдельно значения продольных сил в сечениях:
N1 = — RА
N2 = 120 — RА
N3 = 120 — RА
N4 = 30- RА
3. Вернемся к составлению условия совместности деформации. Имеем 4 участка, значит
Δℓ1+ Δℓ2+ Δℓ3+ Δℓ4= Δ (величина зазора).
Используя формулу Гука для определения абсолютной деформации составим уравнение совместности деформаций, — это именно то дополнительное уравнение, которое необходимо для решения задачи.
Попробуем упростить уравнение. Помним, что величина зазора Δ=0,1 мм = 0,1·10-3 м
Е – модуль упругости, Е=2·105МПа=2·108кПа.
Подставляем вместо N их значения, записанные через опорную реакцию RА.
4. Вычисляем N и строим эпюру продольных сил.
N1=- RА=-47,5кН
N2=120 — RА=72,5кН
N3=120 — RА=72,5кН
N4=30- RА=-17,5кН.
5. Определяем нормальные напряжения σ по формуле и строим их эпюры
Строим эпюру нормальных напряжений.
Проверяем прочность.
σmax= 90,63 МПа < [σ]=160МПа.
Прочность обеспечена.
- Вычисляем перемещения, используя формулу Гука для деформаций.
Идем от стены А к зазору.
Получили величину ω4, равную зазору ,это является проверкой правильности определения перемещений.
Строим эпюру перемещений.
Задача решена.
Для статически определимого стального ступенчатого бруса построить эпюры продольных сил, нормальных напряжений и перемещений. Проверить прочность бруса. Материал – сталь Ст 3, модуль продольной упругости Е=2·105 МПа, допускаемое напряжение [σ]=160МПа.
- Произвольно направляем реакцию стены RAи определяем её из уравнения равновесия.
∑у=0 — RA+F3 — F2+ F1 =0
RA= F3 — F2+ F1 =60-25+10=45кН.
- Определяем продольные силы N методом сечений. Сечение расставляем на характерных участках (между изменениями). Подсказкой может служить размерная нитка – сколько отсечено отрезков, столько будет и участков с сечениями. В нашей задаче их 6.Каждое сечение рассматриваем отдельно с любой стороны на наше усмотрение. Силу N направляем от сечения.
Строим эпюру N. Все значения откладываем перпендикулярно от нулевой линии в выбранном нами масштабе.
Положительные значения условимся откладывать вправо от нулевой линии, отрицательные — влево.
- Определяем нормальные напряжения σ в сечениях по формуле . Внимательно смотрим, по какой площади проходит сечение.
Строим эпюру σ.
Проверим прочность по условию прочности
|σmax|= 75 МПа < [σ]=160МПа.
Прочность обеспечена.
4. Определяем перемещение бруса.
Расчет ведется от стены, в которой перемещение равно нулю ωА= 0.
Формула Гука для определения абсолютной деформации участка
Определяем перемещения:
Строим эпюру перемещений ω.
Задача решена.
На стальной стержень действует продольная сила Р и собственный вес (γ = 78 кН/м3). Найти перемещение сечения 1 –1.
Дано: Е =2·105 МПа, А = 11 см2, а = 3,0 м, в = 3,0 м, с= 1,3 м, Р = 2 кН.
Учет собственного веса
Перемещение сечения 1 –1 будет складываться из перемещения от действия силы Р, от действия собственного веса выше сечения и от действия собственного веса ниже сечения. Перемещение от действия силы Р будет равно удлинению участка стержня длиной в+а ,расположенного выше сечения 1 –1. Нагрузка Р вызывает удлинение только участка а, так как только на нем имеется продольная сила от этой нагрузки. Согласно закону Гука удлинение от действия силы Р будет равно: Определим удлинение от собственного веса стержня ниже сечения 1 –1.
Обозначим его как . Оно будет вызываться собственным весом участка с и весом стержня на участке а+в
Определим удлинение от собственного веса стержня выше сечения 1 –1.
Обозначим его как Оно будет вызываться собственным весом участка а+в
Тогда полное перемещение сечения 1-1:
Т.е, сечение 1-1 опустится на 0,022 мм.
Абсолютно жесткий брус опирается на шарнирно неподвижную опору и прикреплен к двум стержням при помощи шарниров. Требуется: 1) найти усилия и напряжения в стержнях, выразив их через силу Q; 2) Найти допускаемую нагрузку Qдоп, приравняв большее из напряжений в двух стержнях к допускаемому напряжению ; 3) найти предельную грузоподъемность системы , если предел текучести 4) сравнить обе величины, полученные при расчете по допускаемым напряжениям и предельным нагрузкам. Размеры: а=2,1 м, в=3,0 м, с=1,8 м, площадь поперечного сечения А=20 см2
Данная система один раз статически неопределима. Для раскрытия статической неопределимости необходимо решить совместно уравнение равновесия и уравнение совместности деформаций стержней.
(1) -уравнение равновесия
Составим деформационную схему — см. рис. Тогда из схемы: (2)
По закону Гука имеем:
Длины стержней: Тогда получим:
Подставим полученное соотношение в уравнение (1):
Определяем напряжение в стержнях:
Допускаемая нагрузка:
В предельном состоянии: Подставим полученные соотношения в уравнение (1):
При сравнении видим увеличение нагрузки:
Колонна, состоящая из стального стержня и медной трубы, сжимается силой Р. Длина колонны ℓ. Выразить усилия и напряжения, возникающие в стальном стержне и медной трубе.Проведем сечение 1 – 1 и рассмотрим равновесие отсеченной части
Составим уравнение статики: NC+ NM — P= 0 , NC+ NM = P (1)
Задача статически неопределима. Уравнение совместности деформации запишем из условия, что удлинения стального стержня и медной трубы одинаковы: (2) или Сократим обе части на длину стержня и выразим усилие в медной трубе через усилие в стальном стержне :
(3) Подставим найденное значение в уравнение (1), получим:
При совместной работе всегда сильнее напряжен элемент из материала с большим модулем упругости. При ЕС = 2·105 МПа, ЕМ = 1·105 МПа:
Для колонны определить напряжения на всех участках. После приложения силы Р зазор закрывается, Р = 200 кН, Е = 2.105 МПа, А = 25 см2 После приложения силы Р возникнут усилия в защемлениях. Обозначим их как C и В.
Составим уравнение статики: ∑y = 0; С + В – Р = 0; (1)
Дополнительное уравнение совместности деформаций: ∆ℓ1+∆ℓ2=0,3 мм (2);
Чтобы найти абсолютную деформацию, необходимо знать продольную силу на участке. На первом участке продольная сила равна С, на втором разности (С- Р). Подставим эти значения в выражения абсолютных деформаций: (3)
Подставляем выражение (3) в выражение (2) и находим: С = 150 кН, а из (1) B = 50 кН .
Тогда напряжения на участках:
На трех стальных стержнях подвешена жесткая балка; стержень 2 выполнен короче проектного. Определить напряжения в стержнях после сборки системы. Дано: