Твердость по бринеллю предел прочности при растяжении

Твердость по бринеллю предел прочности при растяжении thumbnail

Ме́тод Брине́лля — один из основных методов определения твёрдости материала.

История[править | править код]

Метод предложен шведским инженером Юханом Августом Бринеллем (1849-1925 гг.) в 1900 году и стал первым широко используемым и стандартизированным методом определения твёрдости в материаловедении.

Методика проведения испытаний и расчёт твёрдости[править | править код]

Метод Бринелля относится к методам вдавливания.

Испытание проводится следующим образом:

  • вначале образец подводят к индентору;
  • затем вдавливают индентор в образец с плавно нарастающей нагрузкой в течение 2‑8 секунд;
  • после достижения максимальной величины нагрузка на индентор выдерживается в определённом промежутке времени (для сталей обычно 10‑15 секунд);
  • затем снимают приложенную нагрузку, отводят образец от индентора и измеряют диаметр получившегося отпечатка.

В качестве инденторов используются шарики из твёрдого сплава диаметра 1; 2; 2.5; 5 и 10 мм. Величину нагрузки и диаметр шарика выбирают в зависимости от исследуемого материала.

Исследуемые материалы делят на 5 основных групп:

1 — сталь, никелевые и титановые сплавы;
2 — чугун;
3 — медь и сплавы меди;
4 — лёгкие металлы и их сплавы;
5 — свинец, олово.

Кроме того, выше приведённые группы могут разделяться на подгруппы в зависимости от твёрдости образцов.

При выборе условий испытаний следят за тем, чтобы толщина образца, как минимум, в 8 раз превышала глубину вдавливания индентора. И ещё важно контролировать диаметр отпечатка, который должен находиться в пределах от 0,24·D до 0,6·D, где D — диаметр индентора (шарика).

Твёрдость по Бринеллю обозначается «HBW» и может рассчитываться двумя методами:

  • метод восстановленного отпечатка;
  • метод невосстановленного отпечатка.

По методу восстановленного отпечатка твёрдость рассчитывается как отношение приложенной нагрузки к площади поверхности отпечатка:

,

где:

По методу невосстановленного отпечатка твёрдость определяется как отношение приложенной нагрузки к площади внедрённой в материал части индентора:

,

где  — глубина внедрения индентора, мм.

Нормативными документами определены:

  • диаметры индентора;
  • время вдавливания;
  • время выдержки под максимальной нагрузкой;
  • минимальная толщина образца;
  • минимальная и максимальная величины диагоналей отпечатка;
  • максимальные нагрузки;
  • группа исследуемого материала.

По ISO 6506-1:2005 (ГОСТ 9012-59) регламентированы следующие основные нагрузки: 9.807 Н; 24.52 Н; 49.03 Н; 61.29 Н; 98.07 Н; 153.2 Н; 245.2 Н; 294.2 Н; 306.5 Н; 612.9 Н; 980.7 Н; 1226 Н; 2452 Н; 4903 Н; 7355 Н; 9807 Н; 14 710 Н; 29 420 Н.

Пример обозначения твёрдости по Бринеллю:

600 HBW 10/3000/20,

где:

  • 600 — значение твёрдости по Бринеллю, кгс/мм²;
  • HBW — символьное обозначение твёрдости по Бринеллю;
  • 10 — диаметр шарика в мм;
  • 3000 — приблизительное значение эквивалентной нагрузки в кгс (3000 кгс = 29 420 Н);
  • 20 — время действия нагрузки, с.

Для определения твёрдости по методу Бринелля используют различные твердомеры (например, твердомеры для металлов) как стационарные, так и переносные.

Типичные значения твёрдости для различных материалов[править | править код]

Преимущества и недостатки[править | править код]

Недостатки

  • Метод рекомендуется применять для материалов с твёрдостью до 450 HB.
  • Твёрдость по Бринеллю зависит от нагрузки (обратный размерный эффект — англ. reverse indentation size effect).
  • При вдавливании индентора по краям отпечатка из-за выдавливания материала образуются навалы и наплывы, что затрудняет измерение как диаметра, так и глубины отпечатка.
  • Из-за большого размера тела внедрения (шарика) метод неприменим для тонких образцов.

Преимущества

  • Зная твёрдость по Бринеллю, можно быстро найти предел прочности и текучести материала, что важно для прикладных инженерных задач.

Для стали

,

где  — предел прочности, МПа.

,

где  — предел текучести, МПа.

Для алюминиевых сплавов

Для медных сплавов

  • Так как метод Бринелля — один из самых старых, накоплено много технической документации, где твёрдость материалов указана в соответствии с этим методом.
  • Данный метод является более точным по сравнению с методом Роквелла на более низких значениях твёрдости (ниже 30 HRC).
  • Также метод Бринелля менее критичен к чистоте поверхности, подготовленной под замер твёрдости.

Перевод результатов измерения твёрдости различными методами[править | править код]

Результаты измерения твёрдости по методу Бринелля могут быть переведены с помощью таблиц в единицы твёрдости по другим методам, например метод Виккерса и метод Роквелла. В свою очередь, измерения твёрдости двумя последними методами могут быть переведены в единицы твёрдости по методу Бринелля. Перевод чисел твёрдости следует использовать лишь в тех случаях, когда невозможно испытать материал при заданных условиях. Полученные переводные числа твёрдости как табличные, так и рассчитанные по уравнениям согласно ASTM E140-07 являются лишь приближёнными и могут быть неточными для конкретных случаев. С физической точки зрения, такое сравнение чисел твёрдости, полученных разными методами и имеющих разную размерность, лишено всякого физического смысла.

Нормативные документы[править | править код]

  • ГОСТ 9012-59 (ИСО 410-82, ИСО 6506-81) «Металлы. Метод измерения твердости по Бринеллю»
  • ISO 6506-1:2014 «Metallic materials — Brinell hardness test — Part 1: Test method»
  • ASTM E-10 «Standard Test Method for Brinell Hardness of Metallic Materials»
  • ASTM E140-07 «Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness»

См. также[править | править код]

  • Твёрдость
  • Тест твёрдости Янка
  • Твёрдость по Виккерсу
  • Твёрдость по Шору
  • Твёрдость по Роквеллу
  • Шкала Мооса

Примечания[править | править код]

  1. 1 2 Справочник по пластическим массам под редакцией М. И. Гарбара, М. С. Акутина, Н. М. Егорова (М., «Химия», 1967)

Источник

Подборка ссылок из каталогов инструмента для словаря по машиностроению 303 Таблица перевода твердости согласно немецкого стандарта DIN 50150 Соотношение чисел по Бринеллю Роквеллу Виккерсу и Шору Hardness conversion table Каталог СКИФ-М 2011 Металлорежущий инструмент для фрезерования и сверления Инструментальная оснастка для металлообрабатывающих станков Стр.  RUS ENG303 Таблица перевода твердости согласно немецкого стандарта DIN 50150 Соотношение чисел по Бринеллю Роквеллу Виккерсу и Шору Hardness conversion table 1641 Соотношение твердостей по Роквеллу (HRC) Бринеллю (НВЗ0) Виккерсу (HV10) Перевод твердости в предел прочности Rm (Н/мм2) Справочная таблица соответствия Каталог GUHRING 2012 Режущий инструмент и инструментальная оснастка Стр. 16701641 Соотношение твердостей по Роквеллу (HRC) Бринеллю (НВЗ0) Виккерсу (HV10) Перевод твердости в предел прочности Rm (Н/мм2) Справочная таблица соответствия 492 Таблица перевода твердости Соотношение предела прочности на разрыв Rm Н/мм2 и твердости по Бринеллю HB Роквеллу HRC HRA HRB HRF Виккерсу HV Каталог WIDIA 2010 Режущий осевой инструмент Цельные концевые фрезы из твердого сплава и быстрорежущие Сверла спиральные Развертки многолезвийные Стр. E8492 Таблица перевода твердости Соотношение предела прочности на разрыв Rm Н/мм2 и твердости по Бринеллю HB Роквеллу HRC HRA HRB HRF Виккерсу HV 1636 Справочная сравнительная таблица твердости по Виккерсу HV10 Бринелю НВ30 Роквеллу HRB HRC и предел прочности при растяжении N/mm2 85 81 410 270 91 87 Каталог HOFFMANN GROUP 2015 Редакция 46 на русском Стр. 16581636 Справочная сравнительная таблица твердости по Виккерсу HV10 Бринелю НВ30 Роквеллу HRB HRC и предел прочности при растяжении N/mm2 920 Переводная таблица твёрдости Сравнительные таблица перевода соответствия различных систем и шкал Виккерс Роквелл Бринелль Шор HRC HRA HB HV предела прочнос Каталог TAEGUTEC 2013 Режущий инструмент и инструментальная оснастка Стр. I24920 Сравнительные таблица перевода соответствия различных систем и шкал твёрдости Виккерс Роквелл Бринелль Шор HRC HRA HB HV Предела прочности 1315 Справочная таблица соответствия различных стандартов твердости по Бринелю НВ Шарик 10 мм по Викерсу HV по Роквеллу Предел прочности Каталог MITSUBISHI 2014 Металлорежущий инструмент токарный и вращающийся для машиностроения и металлообработки Стр. N0331315 Справочная таблица соответствия различных стандартов твердости по Бринелю НВ Шарик 10 мм по Викерсу HV по Роквеллу Предел прочности 1268 Hardness conversion table Vickers 50kgf HV Brinell 3000kgf HB Rockwell HRA HRB HRC HRD Shore HS Tensile strength MPa Cоотношение твердостей Таблица Каталог KORLOY 2020 Режущий и вспомогательный инструмент для станков ЧПУ и универсальных Фрезы с СМП Сверла твердосплавные Резцы токарные Пластины сменные режущие Стр. L81268 Hardness conversion table Vickers 50kgf HV Brinell 3000kgf HB Rockwell HRA HRB HRC HRD Shore HS Tensile strength MPa Cоотношение твердостей Таблица 7 Соотношение между величинами твердости измеренными тремя наиболее часто применяемыми методами (Бринеллю HB Роквеллу HRC HRB Виккерсу HV) Справочник - Каталог SANDVIK COROMANT 2006 CoroKey Металлорежущий инструмент со сменными режущими пластинами и цельный для точения фрезерования сверления на станках Стр. 57 Соотношение между величинами твердости измеренными тремя наиболее часто применяемыми методами (Бринеллю HB Роквеллу HRC HRB Виккерсу HV) 931 Hardness reference table (conversion of hardness and strength for ferrous metal) Справочная таблица соответствия различных шкал твердости материалов Каталог ZCC-CT 2015 Металлорежущий инструмент для точения фрезерования обработки отверстий на металлообрабатывающем промышленном оборудовании Стр. D17 ENG931 Hardness reference table (conversion of hardness and strength for ferrous metal) Справочная таблица соответствия различных шкал твердости материалов 932 Справочная таблица соответствия различных шкал твердости материалов Продолжение Rockwell Vickers Brinell HRC HRA HV HB Hardness Tensile strength N/mm2 Каталог ZCC-CT 2015 Металлорежущий инструмент для точения фрезерования обработки отверстий на металлообрабатывающем промышленном оборудовании Стр. D18 ENG932 Справочная таблица соответствия различных шкал твердости материалов Продолжение Rockwell Vickers Brinell HRC HRA HV HB Hardness Tensile strength N/mm2 398 Карта перевода величин твердости различных систем и шкал Бринелль Роквелл Виккерс Перевод величины предела прочности на растяжение Перекрестная таблица таблица пе Каталог PRAMET 2014 на русском языке Токарная обработка Точение Отрезка Обработка канавок Нарезание резьбы Стр. 397398 Карта перевода величин твердости различных систем и шкал Бринелль Роквелл Виккерс Перевод величины предела прочности на растяжение Перекрестная таблица 28 Таблица перевода твердости в МПа Предел прочности Твердость по Викерсу HV по Роквеллу HRC по Бринеллю HB Руководство DORMER 2008 Обработка металлов резанием на металлорежущих станках Сверление Развертывание Зенкерование Зенкование Нарезание резьбы метчиком Стр. 2828 Таблица перевода твердости в МПа Предел прочности Твердость по Викерсу HV по Роквеллу HRC по Бринеллю HB
Читайте также:  Больничный при растяжении мышц

См.также / See also :


Аналоги сталей / Workpiece material conversion table
Группы конструкционных материалов / Workpiece material groups
Диаметр отверстия под резьбу / Tap drill sizes
Типы резьб / Thread types and applications
Режимы резания при точении / Turning formulas
Расчет режимов резания при фрезеровании / Milling formulas
Сверление Формулы / Formulas for drilling
Измерение твердости материалов / Material hardness measurement



Примеры страниц из каталогов инструмента для металлообработки

1641 Каталог GUHRING 2012 Режущий инструмент и инструментальная оснастка Стр.1670

1641 Соотношение твердостей по Роквеллу (HRC) Бринеллю (НВЗ0) Виккерсу (HV10) Перевод твердости в предел прочности Rm (Н/мм2) Справочная таблица соответствия Каталог GUHRING 2012 Осевой режущий инструмент и станочная инструментальная оснастка Стр. 1670

Соотношение твердостей по Роквеллу (HRC) Бринеллю (НВЗ0) Виккерсу (HV10) Перевод твердости в предел прочности Rm (Н/мм2) Справочная таблица соответствия

Соотношение твердостей по Роквеллу (HRC) Бринеллю (НВЗ0) Виккерсу (HV10) Перевод твердости в предел прочности Rm (Н/мм2) Справочная таблица соответствия _ 240 71 75 255 76 80 270 81 85 285 86 90 305 90 95 320 95 100 335 100 105 350 105 110 370 109 115 385 114 120 400 119 125 415 124 130 430 128 135 450 133 140 465 138 145 480 143 150 495 147 155 510 152 160 530 157 165 545 162 170 560 166 175 575 171 180 595 176 185 610 181 190 625 185 195 640 190 200 660 195 205 675 199 210 690 204 215 705 209 220 720 214 225 740 219 230 755 223 235 770 228 240 785 233 245 800 22 238 250 820 23 242 255 835 24 247 260 860 25 255 268 870 26 258 272 900 27 266 280 920 28 273 287 940 29 278 293 970 30 287 302 995 31 295 310 1020 32 301 317 1050 33 311 327 1080 34 319 336 1110 35 328 345 1140 36 337 355 1170 37 346 364 Rm (Н/мм2) HRC НВЗО HV10 1200 38 354 373 1230 39 363 382 1260 40 372 392 1300 41 383 403 1330 42 393 413 1360 43 402 423 1400 44 413 434 1440 45 424 446 1480 46 435 458 1530 47 449 473 1570 48 460 484 1620 49 472 497 1680 50 488 514 1730 51 501 527 1790 52 517 544 1845 53 532 560 1910 54 549 578 1980 55 567 596 2050 56 584 615 2140 57 607 639 2180 58 622 655 59 675 60 698 61 720 62 745 63 773 64 800 65 829 66 864 67 900 68 940 1670 GUHRING Фрезерный инструмент



490 Каталог KORLOY 2008 Инструмент металлорежущий и инструментальная оснастка Стр.K08

490 Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твер Каталог KORLOY 2008 Инструмент металлорежущий и инструментальная оснастка Стр. K08

Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твер

Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твердосплавный шарик D10 (мм) HRA HRB HRC HRD 940 85.6 — 68.0 76.9 97 920 85.3 — 67.5 76.5 96 900 85.0 — 67.0 76.1 95 880 — (767) 84.7 — 66.4 75.7 93 860 — (757) 84.4 — 65.9 75.3 92 840 — (745) 84.1 — 65.3 74.8 91 820 — (733) 83.8 — 64.7 74.3 90 800 — (722) 83.4 — 64.0 74.8 88 780 — (710) 83.0 — 63.3 73.3 87 760 — (698) 82.6 — 62.5 72.6 86 740 — (684) 82.2 — 61.8 72.1 84 720 — (670) 81.8 — 61.0 71.5 83 700 — (656) 81.3 — 60.1 70.8 81 690 — (647) 81.1 — 59.7 70.5 — 680 — (638) 80.8 — 59.2 70.1 80 670 — 630 80.6 — 58.8 69.8 — 660 — 620 80.3 — 58.3 69.4 79 650 — 611 80.0 — 57.8 69.0 — 640 — 601 79.8 — 57.3 68.7 77 630 — 591 79.5 — 56.8 68.3 — 620 — 582 79.2 — 56.3 67.9 75 610 — 573 78.9 — 55.7 67.5 — 600 — 564 78.6 — 55.2 67.0 74 590 — 554 78.4 — 54.7 66.7 — 2055 580 — 545 78.0 — 54.1 66.2 72 2020 570 — 535 77.8 — 53.6 65.8 — 1985 560 — 525 77.4 — 53.0 65.4 71 1950 550 (505) 517 77.0 — 52.3 64.8 — 1905 540 (496) 507 76.7 — 51.7 64.4 69 1860 530 (488) 497 76.4 — 51.1 63.9 — 1825 520 (480) 488 76.1 — 50.5 63.5 67 1795 510 (473) 479 75.7 — 49.8 62.9 — 1750 500 (465) 471 75.3 — 49.1 62.2 66 1705 490 (456) 460 74.9 — 48.4 61.6 — 1660 480 488 452 74.5 — 47.7 61.3 64 1620 470 441 442 74.1 — 46.9 60.7 — 1570 460 433 433 73.6 — 46.1 60.1 62 1530 450 425 425 73.3 — 45.3 59.4 — 1495 440 415 415 72.8 — 44.5 58.8 59 1460 430 405 405 72.3 — 43.6 58.2 — 1410 420 397 397 71.8 — 42.7 57.5 57 1370 410 388 388 71.4 — 41.8 56.8 — 1330 100 379 379 70.8 — 40.8 56.0 55 1290 390 369 369 70.3 — 39.8 55.2 — 1240 380 360 360 69.8 (100.0) 38.8 54.4 52 1205 370 350 350 69.2 — 39.9 53.6 — 1170 360 341 341 68.7 (109.0) 36.6 52.8 50 1130 350 331 331 68.1 — 35.5 51.9 — 1095 340 322 322 67.6 (108.0) 34.4 51.1 47 1070 330 313 313 67.0 — 33.3 50.2 — 1035 Виккерс Бринелль НВ Роквелл Шор HS S 5 Э МРа(1) iff га О 5 Твердосплавный шарик D10(mm) HRA HRB HRC HRD 320 303 303 66.4 (107.0) 32.2 49.4 45 1005 310 294 294 65.8 — 31.0 48.4 — 980 300 284 284 65.2 (105.5) 29.8 47.5 42 950 295 280 280 64.8 — 29.2 47.1 — 935 290 275 275 64.5 (104.5) 28.5 46.5 41 915 285 270 270 64.2 — 27.8 46.0 — 905 280 265 265 63.8 (103.5) 27.1 45.3 40 890 275 261 261 63.5 — 26.4 44.9 — 875 270 256 256 63.1 (102.0) 25.6 44.3 38 855 265 252 252 62.7 — 24.8 43.7 — 840 260 247 247 62.4 (101.0) 24.0 43.1 37 825 255 243 243 62.0 — 23.1 42.2 — 805 250 238 238 61.6 99.5 22.2 41.7 36 795 245 233 233 61.2 — 21.3 41.1 — 780 240 228 228 60.7 98.1 20.3 40.3 34 765 230 219 219 — 96.7 (18.0) — 33 730 220 209 209 — 95.0 (15.7) — 32 695 210 200 200 — 93.4 (13.4) — 30 670 200 190 190 — 91.5 (11.0) — 29 635 190 181 181 — 89.5 (8.5) — 28 605 180 171 171 — 87.1 (6.0) — 26 580 170 162 162 — 85.0 (3.0) — 25 545 160 152 152 — 81.7 (0.0) — 24 515 150 143 143 — 78.7 22 490 140 133 133 — 75.0 21 455 130 124 124 — 71.2 20 425 120 114 114 — 66.7 — 390 110 105 105 — 62.3 100 95 95 — 56.2 95 90 90 — 52.0 90 86 86 — 48.0 85 81 81 — 41.0 Примечание параметры указанные в скобках применять только для сравнения. Index Таблица соответствия твердости Таблица соответствия твердости обрабатываемых материалов

Читайте также:  Какой мазью мазать при растяжении связок голеностопа

303 Каталог СКИФ-М 2011 Металлорежущий инструмент и инструментальная оснастка Стр.

303 Таблица перевода твердости согласно немецкого стандарта DIN 50150 Соотношение чисел по Бринеллю Роквеллу Виккерсу и Шору Hardness conversion table Каталог СКИФ-М 2011 Металлорежущий инструмент для фрезерования и сверления Инструментальная оснастка для металлообрабатывающих станков Стр.

Таблица перевода твердости согласно немецкого стандарта DIN 50150 Соотношение чисел по Бринеллю Роквеллу Виккерсу и Шору Hardness conversion table

Таблица перевода твердости согласно немецкого стандарта DIN 50150 Соотношение чисел по Бринеллю Роквеллу Виккерсу и Шору Hardness conversion table _ Данные из немецкого национального стандарта DIN 50150 Tensile srtength Предел прочности N/mm2 Н/мм2 Vickers hardness Виккерс HV Brinell hardness Бринель HB Rockwell hardness Роквелл HRC э Shore Шор C 255 80 76 270 85 80,7 285 90 85,5 305 95 90,2 320 100 95 335 105 99,8 350 110 105 370 115 109 385 120 114 15 400 125 119 18 415 130 124 19 430 135 128 20 450 140 133 21 465 145 138 21 480 150 143 22 495 155 147 22 510 160 152 23 530 165 156 24 545 170 162 25 560 175 166 25 575 180 171 26 595 185 176 27 610 190 181 28 625 190 185 28 640 200 190 29 660 205 195 30 675 210 199 31 690 215 204 32 705 220 209 32 720 225 214 33 740 230 219 33 755 235 223 33 770 240 228 20,3 34 785 245 233 21,3 35 800 250 238 22,2 36 820 255 242 23,1 36 835 260 247 24,0 37 850 265 252 24,8 37 865 270 257 25,6 38 880 275 261 26,4 39 900 280 266 27,1 39 915 285 271 27,8 40 930 290 276 28,5 41 950 295 280 29,2 42 965 300 285 29,8 43 995 310 295 31,0 44 1030 320 304 32,2 46 1060 330 314 33,3 47 1095 340 323 34,4 48 Tensile srtength Предел прочности N/mm2 Н/мм2 Vickers hardness Виккерс HV Brinell hardness Бринель HB Rockwell hardness Роквелл HRC э Shore Шор C 1125 350 333 35,5 50 1155 360 342 36,6 50 1190 370 352 37,7 51 1220 380 361 38,8 52 1255 390 371 39,8 53 1290 400 380 40,8 54 1320 410 390 41,8 56 1350 420 399 42,7 57 1385 430 409 43,6 58 1420 440 418 44,5 58 1455 450 428 45,3 59 1485 460 437 46,1 60 1520 470 447 46,9 61 1555 480 456 47,7 62 1595 490 466 48,4 63 1630 500 475 49,1 64 1665 510 485 49,8 65 1700 520 494 50,5 65 1740 530 504 51,1 66 1775 540 513 51,7 67 1810 550 523 52,3 68 1845 560 532 53,0 69 1880 570 542 53,6 70 1920 580 551 54,1 70 1955 590 561 54,7 71 1995 600 570 55,2 72 2030 610 580 55,7 73 2070 620 589 56,3 75 2105 630 599 56,8 76 2145 640 608 57,3 77 2180 650 618 57,8 78 2310 660 58,3 78 2350 670 58,8 79 2380 680 59,2 80 2410 690 59,7 80 2450 700 60,1 81 2520 720 61,0 83 2590 740 61,8 84 2660 760 62,5 86 2730 780 63,3 87 2800 800 64,0 88 2870 820 64,7 90 2940 840 65,3 91 3010 860 65,9 92 3080 880 66,4 93 3150 900 67,0 95 3220 920 67,5 96 3290 940 68,0 97 СКИФ-М SKIF-M Техническое приложение Сравнительная

Подборка ссылок иллюстрированных из промышленных каталогов 1084 Соотношение твердости и предела прочности на растяжение Справочная таблица величин измеренных различными методами (HV10 HB30 HRB HRC) Справочник HOFFMANN GROUP 2012 Обработка материалов резанием Garant ToolScout Металлорежущий инструмент и инструментальная оснастка для станков Стр. 10601084 Соотношение твердости и предела прочности на растяжение Справочная таблица величин измеренных различными методами (HV10 HB30 HRB HRC) 978 Справочная таблица соответствия шкал твердости Виккерс Hv Бринелль HB Роквелл HRA HRB HRC HRD Шор HS Предел прочности на разрыв МПа Общая техническая инфор Каталог KORLOY 2014 Металлорежущий инструмент и станочная оснастка Стр. L8978 Справочная таблица соответствия шкал твердости Виккерс Hv Бринелль HB Роквелл HRA HRB HRC HRD Шор HS Предел прочности на разрыв МПа Общая техническая информация 1647 Hardness comparison table Conversion numbers of steel Brinell Hardness (HB) 10mm Ball Load 3000 kgf i Vickers & Hardness Rockwell Hardness Shore Ha Каталог MITSUBISHI 2015 Токарный и вращающийся инструмент Инструментальные решения для оборудования Стр. Q035 ENG1647 Hardness comparison table Conversion numbers of steel Brinell Hardness (HB) 10mm Ball Load 3000 kgf i Vickers & Hardness Rockwell Hardness Shore Ha 490 Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твердоспл Каталог KORLOY 2008 Инструмент металлорежущий для точения фрезерования сверления Инструментальная оснастка Стр. K08490 Таблица соотношения твердости обрабатываемых материалов по различным шкалам Виккерс Бринелль НВ Роквелл Шор HS S МРа(1) Стандартный шарик D10(mm) Твердоспл 952 Сравнительная справочная таблица соотношений между числами твердости по Бринеллю по шкале Роквелла по Виккерсу по Шору Предел прочности на разрыв Каталог SUMITOMO 2016 Режущий инструмент для металлорежущих станков Сверла твердосплавные и со сменными пластинами Фрезы концевые и насадные Резцы токарные Стр. N22952 Сравнительная справочная таблица соотношений между числами твердости по Бринеллю по шкале Роквелла по Виккерсу по Шору Предел прочности на разрыв 614 Справочная таблица соотношения твердости Comparison Table for Tensile Strength, Vickers Hardness, Brinell Hardness and Rockwell Hardness Каталог GESAC 2015 Металлорежущий инструмент для промышленного станочного оборудования Токарные резцы со сменными режущими пластинами Фрезы сборные и монолитные Сверла Стр. 608614 Справочная таблица соотношения твердости Comparison Table for Tensile Strength, Vickers Hardness, Brinell Hardness and Rockwell Hardness 799 Сравнительная справочная таблица соответствия различных величин твердости материала по Бринелю Виккерсу и Роквеллу (выдержка из DIN 50150) Предел проч Каталог WALTER 2007 Режущий инструмент и инструментальная оснастка для металлообрабатывающих станков и центров с ЧПУ Стр. 796799 Сравнительная справочная таблица соответствия различных величин твердости материала по Бринелю Виккерсу и Роквеллу (выдержка из DIN 50150) Предел проч 952 Справочная таблица перевода и сравнения единиц твердости Шкалы BRINELL HB VICKERS HV ROCKWELL HRB HRC Предел прочности R m Hardness conversion table Streng Каталог PRAMET 2016 Металлорежущий инструмент для точения фрезерования сверления на металлообрабатывающем станочном оборудовании Стр. 16952 Справочная таблица перевода и сравнения единиц твердости Шкалы BRINELL HB VICKERS HV ROCKWELL HRB HRC Предел прочности R m Hardness conversion table Streng 788 Соотношение единиц твердости HB HRC HRB HS (по Бринеллю Роквеллу Шору) Предел прочности на разрыв в дюймовых единицах измерения 1000 фунт/ дюйм2 Каталог KENNAMETAL 2018 Режущий инструмент для обработки отверстий в металлах и сплавах Быстрорежущие метчики и раскатники Сборные фрезы с СРП и твердосплавные Стр. M132788 Соотношение единиц твердости HB HRC HRB HS (по Бринеллю Роквеллу Шору) Предел прочности на разрыв в дюймовых единицах измерения 1000 фунт/ дюйм2 1051 Таблица соответствия твердости (соотношение шкал) Виккерс Hv Бринелль НВ Роквелл HrA HrB HrC HrD Шор HS Предел прочности на разрыв МПа Каталог KORLOY 2016 Металлорежущий инструмент и инструментальная оснастка для токарных фрезерных резьбонарезных сверлильных расточных технологических операций на станках Стр. L81051 Таблица соответствия твердости (соотношение шкал) Виккерс Hv Бринелль НВ Роквелл HrA HrB HrC HrD Шор HS Предел прочности на разрыв МПа
Читайте также:  Растяжение мышц плеча предплечья

Измерение твердости материалов / Material hardness measurement

117 Методы определения твердости металлов и сплавов согласно немецким техническим стандартам DIN (Бринелля HB Виккерса HV Роквелла HRC HRB) Справочник HOFFMANN GROUP 2012 Обработка материалов резанием Garant ToolScout Металлорежущий инструмент и инструментальная оснастка для станков Стр. 89117 Методы определения твердости металлов и сплавов согласно немецким техническим стандартам DIN (Бринелля HB Виккерса HV Роквелла HRC HRB) 118 Сравнение значений твёрдости, полученных в результате различных методов, допускается для схожих материалов Cопоставление значений 4 методов Справочник HOFFMANN GROUP 2012 Обработка материалов резанием Garant ToolScout Металлорежущий инструмент и инструментальная оснастка для станков Стр. 90118 Сравнение значений твёрдости, полученных в результате различных методов, допускается для схожих материалов Cопоставление значений 4 методов 119 Значения твёрдости определённые при вдавливании шарика для различных видов пластмасс (термо- и реактопластов) и для сравнения металлов Справочник HOFFMANN GROUP 2012 Обработка материалов резанием Garant ToolScout Металлорежущий инструмент и инструментальная оснастка для станков Стр. 91119 Значения твёрдости определённые при вдавливании шарика для различных видов пластмасс (термо- и реактопластов) и для сравнения металлов 120 Измерение твердости по Шору Твёрдость мягких или аналогичных резине пластмасс определяется простым но недостаточно точным методом Справочник HOFFMANN GROUP 2012 Обработка материалов резанием Garant ToolScout Металлорежущий инструмент и инструментальная оснастка для станков Стр. 92120 Измерение твердости по Шору Твёрдость мягких или аналогичных резине пластмасс определяется простым но недостаточно точным методом 121 Измерение твердости пластмасс Сравнение значений твёрдости приведенное в данное таблице может использоваться только в качестве ориентира Справочник HOFFMANN GROUP 2012 Обработка материалов резанием Garant ToolScout Металлорежущий инструмент и инструментальная оснастка для станков Стр. 93121 Измерение твердости пластмасс Сравнение значений твёрдости приведенное в данное таблице может использоваться только в качестве ориентира Пример иллюстрации инструмента из промышленного каталога (из подборки фото инструментов для металлообработки / Metal cutting tools images)
854 Фото процесса фрезерования концевой фрезой фасонной поверхности заготовки из жаропрочного сплава Иллюстрация из промышленного каталога производителя из США Каталог KENNAMETAL 2018 Режущий инструмент для обработки отверстий в металлах и сплавах Быстрорежущие метчики и раскатники Сборные фрезы с СРП и твердосплавные Стр.

854 Каталог KENNAMETAL 2018 Инструмент для обработки отверстий Метчики Фрезы Стр.

854 Фото процесса фрезерования концевой фрезой фасонной поверхности заготовки из жаропрочного сплава Иллюстрация из промышленного каталога производителя из США Каталог KENNAMETAL 2018 Режущий инструмент для обработки отверстий в металлах и сплавах Быстрорежущие метчики и раскатники Сборные фрезы с СРП и твердосплавные Стр.

Фото процесса фрезерования концевой фрезой фасонной поверхности заготовки из жаропрочного сплава Иллюстрация из промышленного каталога производителя из США

Фото процесса фрезерования концевой фрезой фасонной поверхности заготовки из жаропрочного сплава Иллюстрация из промышленного каталога производителя из США _

Каталоги металлорежущего инструмента, оснастки и приспособлений для станков /
Cutting tools and tooling system catalogs

Источник



Применение зависимости   «прочность-твердость» при обследовании стальных конструкций  с помощью портативных твердомеров.

В настоящее время стальные конструкции широко применяются в качестве несущих элементов различных по назначению зданий и сооружений. Для поддержания нормального технического состояния имеется необходимость в контроле работы конструкций в течение всего срока эксплуатации. Особо важную роль данные о состоянии металла конструкций играют при реконструкции сооружений: они позволяют как сократить расход металла на усиление конструкции, так и правильно рассчитать нагрузки, которые обследуемая конструкция может воспринимать. Одним из основных параметров стальных конструкций, определяющим их работоспособность является прочность материала.

Традиционным методом определения прочности металла в конструкциях является отбор проб и их последующее испытание на растяжение по ГОСТ 1497-84 (ГОСТ 1497-84*. Металлы. Методы испытания на растяжение). Данный способ отличается тем, что полученное в результате значение прочности наиболее близко к истинному. Однако основными недостатками этого метода являются неизбежное ослабление элементов при отборе проб и высокая трудоемкость отбора, испытания и дальнейшего восстановления целостности элемента.

Связь между прочностью металла и его твердостью широко известна, а соотношение между данными параметрами для сталей указано в ГОСТ 22761-77 (ГОСТ 22761-77. Метод измерения твердости по Бринеллю переносными твердомерами статического действия). Однако в разных источниках приводятся различные аналитические зависимости. Например, в СТО 22-04-02 (СТО 22-04-02. Руководство по отбору микропроб, проб и определению механических свойств сталей в металлических конструкциях неразрушающим методом) приведена формула:

определение свойств сталей (1)

При этом зависимость рассматриваемых параметров, указанная в справочнике Морозова А.С., Ремнева В.В., Тонких Г.П. «Организация и проведение обследования технического состояния строительных конструкций зданий и сооружений», имеет вид:

зависимость рассматриваемых параметров (2)

где К = 0,34 при НВ<175 и К = 0,36 при НВ>175.

Значения прочности, полученные по этим зависимостям, имеют существенные отличия и, в ряде случаев, значительно отличаются от истинной прочности испытываемого элемента. Например, в результате одного из проведенных авторами исследований на двутавре из стали Ст3сп, были получены значения твердости и прочности, представленные в таблице 1.

Таблица 1.

Твердость

Прочность

полученная пересчетом по эмпирическим зависимостям и таблицам

по данным сертификата

по данным испытания на разрыв по ГОСТ [1]

по ГОСТ [2]

по СТО [3]

по справочнику [4]

141,1

493

451

471

480

512,5

Как видно из данных, приведенных в таблице 1, определенные косвенным методом значения прочности имеют различия до 9% при разном способе пересчета и отличаются от истинного значения предела прочности на величину до 13%.

Известны исследования различных ученых, например, М.С.Дрозд «Определение механических свойств металла без разрушения», В.М.Хомич «Экспериментальное исследование взаимосвязи предела текучести и некоторых чисел твердости строительных сталей» и другие, направленные на уточнение и анализ зависимости «твердость-прочность». Однако большинство исследований основано на измерении твердости в лабораторных условиях по отобранным образцам, что также неизбежно приводит к ослаблению элемента конструкции.

Помимо вышеуказанного, в литературе отсутствуют методические указания по применению методов неразрушающего контроля твердости в полевых условиях (на строительной площадке или в эксплуатируемом здании). Нет рекомендаций по учету влияния на результат измерения факторов, возникающих при проведении измерений. К данным факторам в первом приближении относятся:

1. Расположение участка измерения;

2. Толщина испытываемого элемента;

3. Качество обработки испытываемой поверхности;

4. Напряженно-деформированное состояние элемента;

5. Наличие и величина остаточных напряжений;

6. Марка стали.

Имеется большой спектр приборов неразрушающего контроля твердости, позволяющих выполнять измерения в полевых условиях. К таким портативным твердомерам, в частности, относятся: ТЕМП-4, ТКМ-459, МЕТ-УД, Equotip и другие. Основные методы, применяемые в них – это ультразвуковой и динамический. В динамическом методе определяется косвенная характеристика – отношение скорости при ударе и отскоке индентора. В ультразвуковом методе измеряемым параметром является частота колебаний индентора, при его внедрении в образец на определенную глубину под действием постоянного усилия. Значения косвенных характеристик в дальнейшем переводятся в число твердости.

Цель настоящей работы – изучение влияния различных технологических факторов на погрешность измерения и достоверность определения прочности стали по измерению твердости.

Для достижения поставленной цели произведены лабораторные экспериментальные исследования на образцах из прокатных профилей различного поперечного сечения (двутавр, швеллер, уголок), выполненных из различных марок стали.

Для определения твердости металла в ходе исследований использованы портативные твердомеры ТЭМП-4 (динамический метод) и МЕТ-УД (динамический и ультразвуковой методы).

На первом этапе исследовалось влияние на результаты измерений вида обработки поверхности исследуемого объекта. Обработка поверхности при применении портативных твердомеров является обязательным условием, а от качества ее выполнения во многом будет зависеть точность результата измерения. Для реализации эксперимента, поверхность образцов была обработана тремя различными