Свойства сталей при растяжении сжатии

Свойства сталей при растяжении сжатии thumbnail

Прочность металлических конструкций – один из важнейших параметров, определяющих их надежность и безопасность. Издревле вопросы прочности решались опытным путем — если какое-либо изделие ломалось — то следующее делали толще и массивнее. С 17 века ученые начали планомерное исследование проблемы, прочностные параметры материалов и конструкций из них можно рассчитать заранее, на этапе проектирования. Металлурги разработали добавки, влияющие на прочность стальных сплавов.

Предел прочности стали

Предел прочности

Предел прочности — это максимальное значение напряжений, испытываемых материалом до того, как он начнет разрушаться. Его физический смысл определяет усилие растяжения, которое нужно приложить к стрежневидному образцу определенного сечения, чтобы разорвать его.

Каким образом производится испытание на прочность

Прочностные испытания на сопротивление разрыву проводятся на специальных испытательных стендах. В них неподвижно закрепляется один конец испытываемого образца, а к другому присоединяют крепление привода, электромеханического или гидравлического. Этот привод создает плавно увеличивающее усилие, действующее на разрыв образца, или же на его изгиб или скручивание.

Испытание на разрыв

Электронная система контроля фиксирует усилие растяжения и относительное удлинение, и другие виды деформации образца.

Виды пределов прочности

Предел прочности — один из главных механических параметров стали, равно как и любого другого конструкционного материала.

Эта величина используется при прочностных расчетах деталей и конструкций, судя по ней, решают, применим ли данный материал в конкретной сфере или нужно подбирать более прочный.

Различают следующие виды предела прочности при:

  • сжатии — определяет способность материала сопротивляться давлению внешней силы;
  • изгибе — влияет на гибкость деталей;
  • кручении – показывает, насколько материал пригоден для нагруженных приводных валов, передающих крутящий момент;
  • растяжении.

Виды испытаний прочности материалов

Научное название параметра, используемое в стандартах и других официальных документах — временное сопротивление разрыву.

Предел прочности стали

На сегодняшний день сталь все еще является наиболее применяемым конструкционным материалом, понемногу уступая свои позиции различным пластмассам и композитным материалам. От корректного расчета пределов прочности металла зависит его долговечность, надежность и безопасность в эксплуатации.

Предел прочности стали зависит от ее марки и изменяется в пределах от 300 Мпа у обычной низкоуглеродистой конструкционной стали до 900 Мпа у специальных высоколегированных марок.

На значение параметра влияют:

  • химический состав сплава;
  • термические процедуры, способствующие упрочнению материалов: закалка, отпуск, отжиг и т.д.

Некоторые примеси снижают прочность, и от них стараются избавляться на этапе отливки и проката, другие, наоборот, повышают. Их специально добавляют в состав сплава.

Условный предел текучести

Кроме предела прочности, в инженерных расчетах широко применяется связанное с ним понятие-предел текучести, обозначаемый σт. Он равен величине напряжения сопротивления разрыву, которое необходимо создать в материале, для того, чтобы деформация продолжала расти без наращивания нагрузки. Это состояние материала непосредственно предшествует его разрушению.

На микроуровне при таких напряжениях начинают рваться межатомные связи в кристаллической решетке, а на оставшиеся связи увеличивается удельная нагрузка.

Общие сведения и характеристики сталей

С точки зрения конструктора, наибольшую важность для сплавов, работающих в обычных условиях, имеют физико-механические параметры стали. В отдельных случаях, когда изделию предстоит работать в условиях экстремально высоких или низких температур, высокого давления, повышенной влажности, под воздействием агрессивных сред — не меньшую важность приобретают и химические свойства стали. Как физико-механические, так и химические свойства сплавов во многом определяются их химическим составом.

Влияние содержание углерода на свойства сталей

По мере увеличения процентной доли углерода происходит снижение пластичности вещества с одновременным ростом прочности и твердости. Этот эффект наблюдается до приблизительно 1% доли, далее начинается снижение прочностных характеристик.

Повышение доли углерода также повышает порог хладоемкости, это используется при создании морозоустойчивых и криогенных марок.

Влияние углерода на механические свойства стали

Рост содержания С приводит к ухудшению литейных свойств, отрицательно влияет на способность материала к механической обработке.

Добавки марганца и кремния

Mn содержится в большинстве марок стали. Его применяют для вытеснения из расплава кислорода и серы. Рост содержания Mn до определенного предела (2%) улучшает такие параметры обрабатываемости, как ковкость и свариваемость. После этого предела дальнейшее увеличение содержания ведет к образованию трещин при термообработке.

Влияние кремния на свойства сталей

Si применяется в роли раскислителя, используемого при выплавке стальных сплавов и определяет тип стали. В спокойных высокоуглеродистых марках должно содержаться не более 0,6% кремния. Для полуспокойных марок этот предел еще ниже — 0,1 %.

При производстве ферритов кремний увеличивает их прочностные параметры, не понижая пластичности. Этот эффект сохраняется до порогового содержания в 0,4%.

Влияние легирующих добавок на свойства стали

В сочетании с Mn или Mo кремний способствует росту закаливаемости, а вместе с Сг и Ni повышает коррозионную устойчивость сплавов.

Азот и кислород в сплаве

Эти самые распространенные в земной атмосфере газы вредно влияют на прочностные свойства. Образуемые ими соединения в виде включений в кристаллическую структуру существенно снижают прочностные параметры и пластичность.

Легирующие добавки в составе сплавов

Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:

  • Хром. Применяется для повышения прокаливаемости и твердости. Доля – 0,8-0,2%.
  • Бор. Улучшает хладноломкость и радиационную стойкость. Доля – 0,003%.
  • Титан. Добавляется для улучшения структуры Cr-Mn сплавов. Доля – 0,1%.
  • Молибден. Повышает прочностные характеристики и коррозионную стойкость, снижает хрупкость. Доля – 0,15-0,45%.
  • Ванадий. Улучшает прочностные параметры и упругость. Доля – 0,1-0,3%.
  • Никель. Способствует росту прочностных характеристик и прокаливаемости, однако при этом ведет к увеличению хрупкости. Этот эффект компенсируют одновременным добавлением молибдена.
Читайте также:  Растяжение мышц в поясничном отделе лечение

Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.

Источник

Механические свойства материалов при растяжении и сжатии.

Механические характеристики строительных материалов устанавливаются в опытах с образцами. С точки зрения различия в механических свойствах материалы при кратковременном действии нагрузки и обычной температуре (+20) условно делятся на упруго-пластичные, упруго-хрупкие и упруго-вязкие.

а) Диаграмма растяжения образца из малоуглеродистой стали.

Испытанию на растяжение обычно подвергаются цилиндрические образцы с расчетной длиной  и первоначальным диаметром . Растягивающая нагрузка в испытательной машине возрастает постепенно с определенной скоростью, обусловленной ГОСТ, без толчков и ударов.

Свойства сталей при растяжении сжатии

Участок 0-1-участок линейной пропорциональности — представляет прямую линию. Нагрузка и деформация прямо пропорциональны друг другу, материал подчиняется закону Гука. Точка 1 является точкой перехода прямой в кривую. Выше этой точки линейное соотношение между  не имеет место.

Предел пропорциональности -максимальное условное напряжение, до которого материал подчиняется закону Гука. Условность напряжения в том, что при определении напряжения вместо истинной площади поперечного сечения образца , вводится первоначальная . Естественно, что при растяжении , истинный предел пропорциональности больше вычисленного.

При увеличении растягивающей силы за величиной деформация начинает расти быстрее нагрузки. Можно найти такую нагрузку , до которой материал имеет лишь упругие деформации.

Предел упругости -условное напряжение повышение которого вызывает незначительные остаточные деформации при разгрузке образца (0,001-0,03%).

При дальнейшем увеличении нагрузки диаграмма имеет ярко выраженный криволинейный вид с выпуклостью вверх, до тех пор, пока вблизи точки не начнут возникать значительные удлинения без заметного роста растягивающей силы (горизонтальный участок 3-3’).

 Предел текучести -условное напряжение, при котором происходит течение материала, т.е. увеличение деформации при постоянной (примерно) нагрузки.

При нагрузке  на поверхности зеркально шлифованного образца под углом 450 к продольной оси появляются так называемые линии Чернова — Людерса (полосы скольжения). Они вызваны взаимным перемещениям частиц материала. На участке (3-3’) стержень может удлиниться 10-15 раз больше, чем до предела пропорциональности.

После образования площадки текучести материал вновь начинает сопротивляться дальнейшему растяжению (упрочняется), а участок (3’-4) называется зоной упрочнения. До максимальной силы  продольное удлинение поперечное сужение образца почти равномерно по всей расчетной длине образца.

Предел прочности (или предел временного сопротивления) -наибольшее условное напряжение, которое выдерживает образец при испытании до разрушения.

Начиная с точки 4, поведение образца резко меняется: деформации удлинения и сужения сосредотачиваются в одном месте образца. Небольшой участок образца около этого места подвергается в дальнейшем наибольшему напряжению. Это влечет за собой местное сужение поперечного сечения, образуется «шейка» (иногда наблюдается образование «шейки» одновременно в нескольких местах). Вследствие уменьшения площади поперечного сечения для дальнейшего удлинения образца нужна все меньшая сила. Наконец при нагрузке  происходить разрыв образца.

Истинное напряжение  (напряжение в момент разрыва образца)-равно отношению силы  к площади сечения «шейки» .

 Свойства материала при разгрузке стремиться восстановить свою первоначальную форму и размеры называется упругостью, а свойства материала деформироваться в необратимой форме, сохраняя заданные размеры и форму под нагрузкой-пластичностью. Поэтому сталь и многие металлы называются упруго-пластичными материалами. Полная деформация таких материалов .

 Отношение полного удлинения при разрушении образца  к первоначальной длине  есть мера пластичности материала, т.е. способности получать большие остаточные деформации при разрушении. Если это отношение выражено в процентах, то её называют остаточным относительным удлинением образца .

Остаточное относительное сужение -величина для оценки пластических свойств материала.

Наклеп (или нагортовки)-Повторная нагрузка вызывает удлинения, материал подчиняется закону Гука вплоть до напряжения . Повышается предел пропорциональности материала (повышается и условный предел текучести -напряжение при котором остаточные деформации достигают 0,2%). Явление изменения свойств материала в результате предварительного пластического деформирования носит название наклепа или нагортовки. При дальнейшем нагружении диаграмма продолжается по кривой и предел прочности  остается неизменным.

Если же наклепанный стержень нагрузить через достаточно большое время, то повышается и предел прочности. Такое изменение свойства материала принято называть естественным старением. Оно может быть ускорено термической обработкой (искусственное старение). Наклёп и старение широко используются в технике- натяжка электропроводов, цепей, троссов перед установкой, холодная прокатка поверхности валиками и т.д.

При сжатии металлов явление наклепа протекает так же, как и при растяжении. Однако наклеп, вызванный предварительным растяжением понижает пределы пропорциональности и текучести при сжатии . Это явление носит название эффекта Баушингера. Аналогичные результаты получаются при испытании на кручение в одном, а потом в противоположном направлении.

Читайте также:  Рецепты при растяжение связок

Диаграмма сжатия образца из малоуглеродистой стали.

Свойства сталей при растяжении сжатии

Применяются цилиндрические образцы с отношением высоты  к диаметру  равным . Для более длинных образцов в опытах трудно избежать влияния продольного изгиба. Образец помещается между двумя плитами пресса, которые, сближаясь, деформирует его. Сжимаемый в продольном направлении образец стремится расшириться в поперечных направлениях. Однако из-за трения между плитами пресса и торцами образца расширение происходит не свободно. В результате образец приобретает вид бачонка.

Особенности свойств упруго пластичных материалов при сжатии:

  •  

Свойства сталей при растяжении сжатии

Разрушение материала не происходит, под действием приложенной силы образец принимает бочкообразную форму, а затем превращается в диск;

  •  На участке 0-1 материал образца подчиняется закону Гука, причем предел пропорциональности при сжатии  близок по абсолютной величине к  при растяжении, т.е. , а ,  ;
  •  В испытаниях обычно определяют предел пропорциональности;
  •  При загружениях за пределом пропорциональности полная деформация образца .

Диаграмма растяжения – сжатия упруго – хрупких материалов (на примере чугуна)

Вид образца до и после испытания

Особенности свойств упруго-хрупких материалов (чугун, бетон, природные камни и т.д.) при растяжении и сжатии:

  •  На диаграммах нет ярко выраженного начального прямолинейного участка (иногда диаграмму спрямляют на участке или на всем протяжении — штриховая линия). Материал условно упругий;
  •  Разрушение материала происходит как при растяжении, так и при сжатии, при малых остаточных деформациях ;
  •  

Свойства сталей при растяжении сжатии

В испытаниях определяют предел прочности . Обычно  при сжатии по абсолютной величине больше  при растяжении ( для чугуна ). Т.е. показатель прочности упруго-хрупких материалов при сжатии больше, чем при растяжении;

  •  Разрушение при растяжении происходит по плоскости перпендикулярно к продольной оси образца, при сжатии под углом 300-450 к продольной оси либо параллельно ей.

Диаграмма испытаний анизотропных упруго – вязких материалов (на примере древесины).

Испытание анизотропных  материалов (древесина, слоистые пластмассы) производится в нескольких направлениях (вдоль и поперек волокон- в опытах с древесиной). Вид образцов из древесины до и после испытания

Особенности механических свойств древесины при растяжении и сжатии:

  •  

Свойства сталей при растяжении сжатии

При растяжении вдоль волокон предел прочности материала  в несколько раз (до 10) больше, чем предел прочности поперек волокон , а полные деформации к моменту разрушения наоборот.

  •  При растяжении и сжатии вдоль волокон определяют предел прочности , поперек волокон — предел пропорциональности ;
  •  При сжатии (смятии) поперек волокон растяжение между волокнами уменьшается и материал переходит в новое качество- прессованную древесину;
  •  Вид диаграммы зависит от скорости нагружения  или скорости деформирования . Проявляются вязкие свойства материала, Поэтому древесину относят к группе упруго – вязких материалов.

Механизм упругой и пластической деформации.

Твердые тела разделяются на аморфные и кристаллические. Аморфные (стекло, пластмассы) в своем поведении обнаруживают качества  сходные с вязкой жидкостью, свойства их не носят стабильного характера, резко зависят от времени действия сил. В связи с этим рассмотрим механизм деформирования металлов.

Металлы и их сплавы, представляют собой полукристаллические тела, т.е. состоят из множества мелких кристаллов, называемые кристаллитами и зернами. Прочность металлов и сплавов определяются прочностью зерен и соединением их между собой. Внутри кристаллов, атомы металлов располагаются в определенном порядке, образуя правильную пространственную решетку, называемую кристаллической решеткой. Строение её зависит от свойств атомов и физических условий кристаллизации. Между атомами кристаллической решетки существуют постоянные силы взаимодействия, система которых в ненагруженном кристалле строго определена, также как и расположение самих атомов.

Под влиянием внешних сил изменяются расстояния между атомами. Если смещения невелики и силы межатомного взаимодействия не преодолены, то после снятия нагрузки атомы возвращаются в первоначальное положение устойчивого равновесия. Так протекает упругая деформация.

Если внешние силы увеличиваются, то возрастают и внутренние. Возникает пластическая деформация, а в дальнейшем и разрушения.

Пластическая деформация металлов происходит в результате смещения одного слоя атомов кристаллической решетки относительно другой на целое число элементов решетки (упрощенная идеализированная модель  изображена на рисунке).  Это явление называется скольжением. Расстояние “а” между атомами остается неизменным. Каждый предыдущий атом занимает место последующего. Кристалл сохраняет свои свойства, меняя лишь конфигурацию. На поверхности тела из упруго-пластичных материалов в момент течения появляются полосы скольжения.

Точные теоретические расчеты позволяют определить усилия, при которых должна появляться пластическая деформация скольжения. В действительности эта деформация образуется при уровнях напряжений в сотни раз меньше теоретических. Это объясняется наличием в реальных металлах дефектов и несовершенств кристаллической решетки. Например, отсутствие (выпадение) в кристаллической решетке одного или нескольких атомов, называемое вакансией, или слоя атомов, называемое дислокацией, а также внедрение (включение) частиц элементов другого  химического состава. В результате при невысоких уровнях напряжений вакансии, дислокации перемещаются через кристалл. При этом переход атомов в соседнее положение происходит не одновременно по всей плоскости скольжения, а распространяется подобно волне или подобно последовательному опрокидыванию брусков, в случае представленном на рисунке. Толкнув первый брусок, мы опрокинем последовательно все, на что потребуется энергии меньше, чем для опрокидывания всех брусков одновременно.

Возникшее в одном кристалле пластическое смещение не может возрастать неограниченно, т.к. оказывается блокированным соседними, более удачно ориентированными кристаллами. Этим объясняется упрочнение материала и увеличение сил при наличии пластической деформации. Повышение сопротивления движению дислокаций приводит к увеличению прочности металлов, например при включении в материал нитей или опилок другого материала. Получены бездислокационные (бездефектные) нитевидные металлические кристаллы “усы”, обладающие прочностью близкой к теоретической. Установлено, что при большом количестве вакансий, дислокаций, ориентированных определенным образом, удается также повысить прочность материала, т.к. наблюдается эффект гашения, например одной дислокации при встрече другой.   

Читайте также:  Растяжение связок у ребенка гипс

Влияние различных факторов на механические свойства материалов.

Влияние изменения температуры.

Свойства материалов зависит от температуры тела Т. Изменение температуры, оказывает наименьшее влияние на каменные (естественные и искусственные) материалы. Металлы, их сплавы и полимеры существенно изменяют  механические характеристики при изменении температуры.

Опытами установлено:

  •  До  пределы текучести и прочности углеродистой стали повышаются  (), а остаточные относительное удлинение  уменьшается (примерно вдвое). Сталь становится синеломкой. При дальнейшем увеличении температуры  и  резко уменьшаются, а  увеличивается. Поэтому выше  такую сталь не применяют;
  •  При повышении температур модуль упругости стали уменьшается (до 40% при 5000), а коэффициент Пуассона увеличивается (от 0,28 при Т=200С до 0,33 при Т=5000);
  •  В случае длительного воздействия высокой температуры  происходит разрушение материала при напряжений  меньшем предела прочности . В связи с этим вводится специальная характеристика предел длительной прочности  — максимальное постоянно действующее напряжение, которое может выдержать материал, не разрушаясь в течение определенного времени t при заданной температуре Т. Чем меньше , а значит больше t, тем меньше остаточное относительное удлинение , т.е материал становится хрупким. Это явление называется охрупчиванием. Для высокополимеров указанный эффект проявляется при комнатной температуре;
  •  При охлаждении сталей, цинковых сплавов ниже 00 С модуль Е, пределы  и  возрастают, а показатели  и  — уменьшаются. Материал становится хрупким. Такие материалы называются хладноломкими. Цветные металлы (медь, алюминий, никель, серебро, золото) и специальные стали, не обладают хладноломкостью – при понижении температуры растут Е,  и  ,  и .

При действии высоких температур материалы должны обладать жаростойкостью (способность противостоять химическому воздействию, например газовой среде) и жаропрочностью (способностью сохранять механические свойства). Свойство материалов не размягчаться или слабо размягчаться при достаточно длительном воздействии высокой температуры, как температура каления, называется красностойкостью (для стали . Сейчас созданы специальные сплавы и металлокерамические материалы, которые надежно применяются при .

При низких температурах надо применять материалы, не обладающие хладноломкостью.

Влияние скорости нагружения и деформирования.

При увеличении скорости нагружения , а следовательно, и скоростей напряжений  и деформации , пластические материалы увеличивают сопротивляемость деформированию. У металлов влияние  проявляется при значительной разнице в скоростьях. Сильно зависят от  свойства пластмасс.

Сравнение результатов статических и динамических испытаний малоуглеродистой стали, на растяжение при комнатной температуре показывает следующее:

  •  Пределы прочности и пропорциональности при динамическом нагружении повышаются;
  •  Модуль Е и коэффициент  практически не зависят от , , ;
  •  Площадка текучести при динамических воздействиях исчезает, и деформация соответствующая , при увеличении  уменьшается, т.е. увеличение скорости нагружения способствует повышению хрупкости.

Влияние продолжительности действия нагрузки на механические свойства материалов.

Свойства сталей при растяжении сжатии

Загрузив образец из реального материала, который подчиняется закону Гука, получим график зависимости относительных деформации от времени. При напряжениях  (участок ВС) происходит нарастание во времени упругих деформаций после приложения нагрузки, а при напряжении  (участок EF) – убывание упругих деформаций после снятия нагрузки. Это явление носит название упругого последействия.

В вязких материалах явление последействия (уже не упругого) проявляется в двух видах: ползучести и релаксации.

Свойства сталей при растяжении сжатии

Процесс нарастания во времени остаточной деформации при постоянном напряжении и температуре называется ползучестью. Этот процесс для бетонов, древесины при обычной температуре может быть затухающим или незатухающим. Затухающая ползучесть не опасна, незатухающая  — заканчивается разрушением (точка  F). Поэтому для таких материалов вводится понятие предела длительного сопротивления  — под которым понимается максимальное напряжение, превышение которого вызывает незатухающую ползучесть, приводящую к разрушению. Для древесины , для бетонов .

В металлах при обычной температуре (Т=200С) ползучесть не проявляется, а возникает при высоких температурах (для стали при Т=4000С). Причем на участках ВВ’ и DE’, называемыми участками установившейся ползучести, в теоретических расчетах вводится допущение о равенстве скоростей деформирования  и параллельности прямых  ВВ’ и DE’. При ползучести растягивающие деформации происходит за счет пластических деформаций, которые после снятия  нагрузки не исчезают.

Свойства сталей при растяжении сжатии

При неизменных напряже-ниях  с течением времени проис-ходит рост деформации , то для того чтобы  была неизменной , необходимо снижение напряжений . Явление самопроизвольного уменьшения напряжений  при постоянной деформации  и температуре Т тела, вследствие уменьшения упругой деформации  и увеличения на ту же величину пластической деформа-ции  называется релаксацией напряжений На участке АВ (вначале выдержки) скорость уменьшения напряжений  велика. В дальнейшем (участок ВС)  уменьшается и кривая напряжений приближается к горизонтальной асимптоте соответствующей . Релаксация при обычной температуре наблюдается в деревянных, пластмассовых, бетонных элементах, а при высоких температурах и в металлических элементах (уменьшение натяжения заклепок, болтов).

Ползучесть и релаксация это проявление вязкости свойства материала изменять напряженное и деформированное состояние во времени. Но эти явления обнаруживаются в определенных частотных случаях режима: ползучесть в случае постоянства напряжений , а релаксация – постоянства деформации . Увеличение пластических деформации  происходит при релаксации за счет уменьшения упругих деформаций  при неизменной длине элемента при ползучести – исключительно за счет увеличения длины элемента.

Источник