Стальной стержень при растяжении
Пример решения задачи на растяжение и сжатие
.
Условие задачи на растяжение и сжатие
Стальной стержень (модуль Юнга кН/см2) с размерами см; см, см и площадью поперечного сечения нижнего участка см2, а верхнего – см2 нагружен внешними осевыми силами кН и кН. Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .
Расчетная схема для задачи на растяжение и сжатие
рис 3.2
Решение пример задачи на растяжение и сжатие
Определяем значение опорной реакции , возникающей в заделке
Учитывая, что , направим опорную реакцию вниз. Тогда из уравнения равновесия находим:
кН.
Строим эпюру продольных сил
Разбиваем длину стержня на три участка. Границами участков являются сечения, в которых приложены внешние силы и (или) изменяется размер поперечного сечения стержня.
Воспользуемся методом сечений. Делаем по одному сечению в произвольном месте каждого из трех участков стержня.
Cечение 1 – 1. Отбросим (или закроем листком бумаги) верхнюю часть стержня (рис. 3.2, б). Само сечение 1 – 1 мысленно считаем неподвижным. Мы видим, что внешняя сила растягивает рассматриваемую нижнюю часть стержня. Отброшенная нами верхняя часть стержня противодействует этому растяжению. Это противодействие мы заменим внутренней продольной силой , направленной от сечения и соответствующей растяжению. Разрушения стержня не произойдет только в том случае, если возникающая в сечении 1 – 1 внутренняя продольная сила уравновесит внешнюю силу . Поэтому очевидно, что
кН.
Сечение 2 – 2. Внешняя сила растягивает рассматриваемую нами нижнюю часть стержня, а сила ее сжимает (напомним, что 2 – 2 мы мысленно считаем неподвижным). Причем, согласно условию задачи, . Чтобы уравновесить эти две силы, в сечении 2 – 2 должна возникнуть внутренняя сила , противодействующая сжатию, то есть направленная к сечению. Она равна:
кН.
Сечение 3 – 3. Отбросим теперь часть стержня, расположенную ниже этого сечения. Внутренняя продольная сила должна уравновесить внешнюю (реактивную) сжимающую силу . Поэтому она направлена к сечению и равна:
кН.
Легко убедиться в том, что полученный результат не изменится, если мы отбросим не нижнюю, а верхнюю часть стержня. В этом случае продольная сила также противодействует сжатию. Она равна:
кН.
При построении эпюры продольных сил будем пользоваться следующим правилом знаков: внутренняя продольная сила, возникающая в поперечном сечении стержня, считается положительной, если она противодействует растяжению стержня, и отрицательной, если она противодействует его сжатию. Оно вводится для того, чтобы можно было наглядно видеть, какая часть стержня испытывает деформацию растяжения, а какая часть – деформацию сжатия. Это обстоятельство может оказаться крайне важным, в частности для стержней из хрупкого материала, которые имеют разные допускаемые напряжения на растяжение и на сжатие.
Таким образом, мы установили, что в любом сечении нижнего участка стержня внутренняя продольная сила противодействует растяжению и равна кН. В любом сечении среднего и верхнего участков стержня имеет место деформация сжатия, поэтому кН.
Для построения эпюры продольных сил проводим тонкой линией ось, параллельную оси стержня z (рис. 3.2, д). Вычисленные значения продольных сил в выбранном масштабе и с учетом их знака откладываем от этой вертикальной оси. В пределах каждого из участков стержня продольная сила остается постоянной, поэтому мы как бы «заштриховываем» горизонтальными линиями соответствующий участок.
Отметим, что каждая линия «штриховки» (то есть ордината эпюры) в принятом масштабе дает значение продольной силы в соответствующем поперечном сечении стержня.
Полученную эпюру обводим жирной линией.
Анализируя полученную эпюру, мы видим, что в местах приложения внешних сил на эпюре имеет место скачкообразное изменение продольной силы на величину, равную значению соответствующей внешней силы. Причем изменение поперечного размера стержня, как это видно из рис. 3.2, д, никак не сказывается на характере эпюры .
Строим эпюру нормальных напряжений
Нормальное напряжение, возникающее в k–м поперечном сечении стержня при растяжении (сжатии), вычисляется по следующей формуле
,
где и – продольная сила и площадь k–го поперечного сечения стержня соответственно.
В первом поперечном сечении стержня нормальное напряжение равно
кН/см2,
во втором –
кН/см2,
в третьем –
кН/см2.
Строим по вычисленным значениям эпюру (рис. 3.2, е). В пределах каждого из участков стержня напряжения постоянны, то есть эпюра напряжений параллельна оси. Заметим, что в отличие от эпюры N, на эпюре «скачок» имеет место не только в местах приложения внешних сил, но и там, где происходит изменение размеров поперечного сечения стержня.
Оцениваем прочность стержня
Сопоставляем наибольшее (по модулю) нормальное напряжение , которое в нашем примере возникает во втором сечении стержня, с допускаемым напряжением . Напомним, что допускаемое напряжение представляет собой долю от предельного напряжения , то есть от напряжения, при котором начинается разрушение материала. Разрушение стали, как пластичного материала, начинается при появлении значительных остаточных деформаций. Поэтому для стали предельное напряжение равно пределу текучести: . Тогда
кН/см2.
Условие прочности имеет вид . В нашем случае
кН/см2 > кН/см2,
следовательно, прочность стержня на втором участке не обеспечена.
Таким образом, площадь поперечного сечения стержня на втором участке, равную см2, нам необходимо увеличить.
Несложный анализ показывает, что на других участках стержня условие прочности выполняется.
Из условия прочности определяем требуемую площадь поперечного сечения стержня на втором участке:
см2.
Принимаем на втором участке см2.
Вычисляем удлинение всего стержня
При переменных по длине стержня значениях продольной силы и площади поперечного сечения удлинение вычисляется по формуле
,
где E – модуль Юнга, а – длина соответствующего участка стержня.
Тогда
см.
Таким образом, длина стержня уменьшается на мм.
Задача по сопромату на растяжение и сжатие для самостоятельного решения
Условие задачи на растяжение и сжатие
Стальной стержень (модуль Юнга кН/см2) находится под действием внешних осевых сил и (рис. 3.1). Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .
Схемы для задачи на растяжение и сжатие
Исходные данные к задаче на растяжение и сжатие
Номер схемы | F, см2 | a, м | b, м | c, м | P, кН |
1 | 2,0 | 1,2 | 1,4 | 1,6 | 11 |
2 | 2,2 | 1,4 | 1,6 | 1,4 | 12 |
3 | 2,4 | 1,8 | 1,6 | 1,2 | 13 |
4 | 2,6 | 1,6 | 2,0 | 1,0 | 14 |
5 | 2,8 | 2,0 | 1,8 | 1,2 | 15 |
6 | 3,0 | 2,2 | 1,6 | 1,4 | 16 |
7 | 3,2 | 2,4 | 1,4 | 1,6 | 17 |
8 | 3,4 | 2,6 | 1,2 | 1,8 | 18 |
9 | 3,6 | 2,8 | 1,0 | 1,4 | 19 |
3,8 | 2,4 | 1,6 | 1,2 | 20 |
Источник
1. Определение внутренних сил в растягиваемых и сжимаемых стержнях.
2. напряжения при растяжении (сжатии) прямого стержня. Понятие о допускаемом напряжении.
3. Определение деформаций и перемещений. Закон Гука.
4. Опытное изучение свойств материалов.
Растяжение и сжатие – это простой и часто встречающийся случай напряженного состояния элементов конструкции и деталей машин.
В таких условиях работает буксировочный канат или трос подъемного механизма, колонна здания.
Чистое (центральное) растяжение или сжатие возникает в элементе конструкции, если внешняя нагрузка вызывает в нем только одно внутреннее усилие, которое сопротивляется этой внешней нагрузке, — нормальную продольную силу.
При определении значений внутренних нормальных сил, действующих в поперечных сечениях стержней, примем следующее правило знаков:
— нормальная сила положительна, если сопротивляется растяжению стержня;
— нормальная сила отрицательна – если сопротивляется сжатию.
Для определения значений внутренней нормальной силы в любом из поперечных сечений используется метод сечений.
Пусть прямой стержень постоянной толщиной в одном конце закреплен, а к его другому торцу приложена растягивающая его вдоль оси стержня внешняя сила F.
Какое по величине внутреннее продольное усилие возникает в некотором поперечном сечении стержня n-n?
Прежде всего, отметим, что под действием закрепления и внешней силы стержень растягивается (деформируется), но никуда не движется, т.е. остается в равновесии.
Удобно вначале мысленно «снять» со стержня закрепление. Заменим его влияние на стержень эквивалентно действующей внешней силой. Эта сила равна реакции закрепления.
Т.е. в закреплении возникает некоторое усилие, благодаря которому верхний край стержня остается неподвижным. Это усилие называют реакцией закрепления на внешнюю нагрузку, передающееся на это закрепление через деформируемый стержень.
Незакрепленный стержень, теперь уже под действием двух внешних воздействий: известной силы и неизвестной пока реакции также никуда не движется, т.е. находится в равновесии.
Определить величину реакции поможет математическая формулировка этого факта.
Проведем координатную ось Оz, для удобства совпадающую с осью стержня. Стержень никуда не движется под действием силы и реакции в частности, не движется и вдоль оси, потому что проекции этих внешних сил на ось уравновешивают друг друга.
Такого рода факт в механике формулируется уравнением общего равновесия стержня: суммарная проекция на ось Оz всех действующих на стержень внешних сил, равна нулю:
При построении уравнений общего равновесия механики принято использовать следующее правило знаков:
· Проекция усилия на ось положительна, если ее направление совпадает с выбранным направлением этой оси;
· И наоборот – проекция отрицательна, если направлена в противоположную сторону.
Эпюры – графики внутренних усилий, напряжений, перемещений, деформаций, возникающих в элементах конструкций и деталях машин под воздействием внешней нагрузки.
Напряжения при растяжении (сжатии) прямого стержня
Предположим, растягивающую брус внешнюю силу удалось распределить равномерно по его торцам.
Опыты показывают. Что в этом случае каждое продольное волокно бруса подвержено только растяжению и в любом его поперечном сечении внутренние силы действуют только по нормали к этим сечениям.
Поперечные сечения бруса, плоские до деформации, под действием внешних сил перемещаются параллельно своему начальному положению и остаются постоянными.
Растягивающие стержень внешние силы не всегда удается распределить по площади стержня равномерно.
Но опыты показывают, что поведение поперечных сечений растягиваемых стержней, расположенных на некотором расстоянии от места приложения внешней нагрузки, уже не зависит от способа приложения этих сил и всегда соответствует гипотезе плоских сечений.
При рассмотрении деформаций растяжения или сжатия, а также при рассмотрении последующих простых деформаций нами будет рассматриваться принцип Сен-Венана, названный по имени французского ученого XIX века, который заключается в том, что внутренние силовые факторы, возникающие в результате действия внешних сил, распределяются по сечениям рассматриваемого тела равномерно.
Рассмотрим стержень, подверженный действию продольных сил
Если на поверхность призматического стержня нанести сетку линий параллельных и перпендикулярных оси стержня, и приложить к нему растягивающую силу, то можно убедиться в том, что линии сетки и после деформации останутся взаимно-перпендикулярными, но расстояние между ними изменятся.
Все горизонтальные линии, например, cd, переместятся вниз, оставаясь горизонтальными и прямыми.
Можно предположить, что и внутри стержня будет происходить то же самое, т.е. поперечные сечения стержня плоские и нормальные к его оси до деформации, останутся плоскими и нормальными к оси и после деформации.
Эту гипотезу называют гипотезой плоских сечений (гипотезой Бернулли).
Продольная сила N есть равнодействующая нормальных напряжений в поперечном сечении:
поскольку , то
, отсюда
В частном случае, когда на стержень действует одна внешняя сила, из уравнения равновесия получим:
И вместо общей формулы получим частный вид формулы для растяжения:
Эти формулы справедливы и для сжатия, с той только разницей, что сжимающие напряжения считаются отрицательными.
Кроме того, сжатые стержни помимо расчета на прочность рассчитываются также и на устойчивость.
Очевидно, что эти напряжения в реальных условиях нельзя создавать больше или много меньше определенной величины. Поэтому вводится понятие допускаемого напряжения: — условие прочности.
Определение деформаций и перемещений. Закон Гука.
Опыты показывают, что при растяжении длина стержня увеличивается, а поперечные размеры уменьшаются, при сжатии – наоборот.
Для многих материалов при нагружении до определенных пределов опыты показали следующую зависимость между относительным удлинением стержня и напряжением :
, где
— абсолютное удлинение стержня
— длина образца до деформации
— длина образца после деформации
Эта зависимость носит название закона Гука и формулируется следующим образом: линейные деформации прямо пропорциональны нормальным напряжениям.
— коэффициент, зависящий от материала, т.е. его способность сопротивляться деформированию. Он характеризует жесткость материала, т.е. его способность сопротивляться деформированию.
Для ст.3 .
Для других материалов значение можно найти в справочниках.
Имея ввиду, что для стержня постоянного сечения:
, а
Можно получить формулу для определения полного (абсолютного) удлинения (укорочения) стержня:
Между продольным удлинением и поперечным существует зависимость:
Здесь — коэффициент поперечной деформации (коэффициент Пуассона),который характеризует способность материала к поперечным деформациям.
При пользовании этой формулой удлинение считается положительным, а укорочение – отрицательным.
Для всех материалов .
Для стали при упругих деформациях можно принимать =0,3.
Зная можно определить полное поперечное сужение или расширение стержня : , где — поперечный размер стержня до деформации
— поперечный размер стержня после деформации.
В стержнях переменного сечения напряжения в поперечных сечениях можно считать распределенными равномерно (если угол конусности ) и определять их по той же формуле, что и для стержня постоянного сечения.
Для определения деформаций стержня переменного сечения, в поперечных сечениях которого действует продольная сила N, найдем сначала удлинение элемента длиной , которое является дифференциалом полного удлинения .
Согласно закону Гука, имеем:
Полное удлинение стержня получим, интегрируя выражение в пределах :
, если и — величины постоянные, то
Чтобы воспользоваться этой формулой, необходимо знать закон изменения в зависимости от .
Для ступенчатых стержней интегрирование заменяется суммирование, и полное изменение длины бруса определяется как алгебраическая сумма деформаций его отдельных частей, в пределах которых :
Например, для стержня изображенного на схеме, имеем:
Определим теперь удлинение стержня постоянного сечения под действием силы тяжести, которая представляет собой нагрузку, равномерно распределенную вдоль стержня.
Удельный вес материала обозначим через .
Рассмотрим деформацию элемента , выделенного на расстоянии от нижнего конца.
Удлинение элемента равно:
Интегрируя это выражение в пределах, получим
Это выражение можно представить в другом виде, если учесть, что сила тяжести бруса равна: или , тогда получим — формула по определению перемещения с учетом собственного веса при известной длине
Следовательно, удлинение бруса постоянного сечения от собственной силы тяжести в два раза меньше удлинения от действия силы, равной силе тяжести и приложенной к его концу.
Опытное изучение свойств материалов
Для изучения свойств материалов и установления значения предельных (по разрушению или по пластическим деформациям) производят испытания образцов материала вплоть до разрушения. По виду деформации различают испытания на растяжение, сжатие, кручение и изгиб.
Испытания производят при статической и ударной (испытание на усталость и выносливость) нагрузках на ГМС – 50.
Цель испытания на растяжение – определение механических характеристик материала.
При проведении испытания автоматически записывается диаграмма зависимости между растягивающей силой и удлинением образца.
Условия и порядок выполнения работы
1. Стальной стержень ступенчатого сечения находится под действием внешней силы и собственного веса.
2. Необходимо построить эпюры:
· нормальных продольных сил
· нормальных напряжений
· перемещения сечений стержня относительно жесткой заделки.
Площадь большего поперечного сечения стержня в 2 раза превышает меньшую.
Источник
где N — продольная растягивающая сила, действующая на стержень;
F — площадь поперечного сечения стержня;
σ — нормальные напряжения, возникающие в рассматриваемом поперечном сечении стержня в ответ на действие растягивающей продольной силы;
Rр — расчетное сопротивление материала стержня растяжению (для некоторых материалов расчетные сопротивления растяжению, сжатию, изгибу и т.п. могут различаться).
Визуально это может выглядеть так:
Рисунок 525.1. Нормальные напряжения при растяжении прямолинейного стержня.
На рисунке 525.1.а) мы видим прямолинейный стержень длиной l, показанный серым цветом, к которому приложена растягивающая сила N. При этом точка приложения силы находится на нейтральной оси стержня, совпадающей с осью х, показанной пунктирной линией.
Для упрощения расчетов заменяем опору А соответствующей опорной реакцией А (рис.525.1.б). Исходя из условий статического равновесия:
∑х = А + N = 0 (149.5.2)
А = — N (525.2)
Это означает, что опорная реакция A равна по значению растягивающей силе N, но направлена в противоположную сторону.
Если взглянуть на эту ситуацию под некоторым углом, то она будет выглядеть так, как показано на рисунке 525.1.в). На этом рисунке мы видим, что нормальные напряжения — это реакция материала на действие растягивающей силы и направлены эти напряжения в сторону, противоположную действию сил. Другими словами нормальные напряжения препятствуют деформации растяжения, и направлены на то, чтобы вернуть материалу исходную форму. Иногда для упрощения восприятия нормальные напряжения, возникающие при растяжении, принято изображать направленными от сечения, как показано на рисунке 525.1.г), а сжимающие напряжения — направленными к сечению. С точки зрения физики такая замена вполне допустима, так как нормальные напряжения (внутренние силы) можно рассматривать как плоскую нагрузку, распределенную по всей площади сечения (внешнюю силу). Как правило растягивающие нормальные напряжения рассматриваются как положительные, а сжимающие — как отрицательные.
Сечение стержня, показанное на рисунке 525.1.в) розовым цветом, является перпендикулярным нейтральной оси стержня и называется поперечным сечением.
Как следует из формулы (525.1) и из приведенного рисунка, длина стержня l на значение нормальных напряжений никак не влияет. А вот параметры поперечного сечения стержня: ширина сечения b и высота сечения h, если сечение прямоугольное, очень даже влияют, так как от этих параметров зависит площадь F поперечного сечения.
Примечание: конечно же поперечное сечение стержня далеко не всегда имеет прямоугольную форму, как показано на рисунке 525.1.в). Поперечное сечение может быть и круглым, и овальным, и ромбическим, и вообще иметь любую сколь угодно сложную форму, тем не менее форма поперечного сечения никак на значение нормальных напряжений не влияет (во всяком случае такое допущение принимается в теории сопротивления материалов), а влияет только площадь сечения, определить которую тем сложнее, чем более сложной является форма поперечного сечения.
Проверить данные постулаты теории сопротивления материалов очень легко и просто. Достаточно взять нитку и попробовать ее разорвать (вариант а)). Затем разорвать нитки с с той же катушки, но б) более короткую и в) более длинную, чем в первом случае. Во всех трех случаях усилие, которое необходимо приложить для разрыва нитки, будет примерно одинаковым.
Но если одну из ниток сложить вдвое и попробовать разорвать, то усилие, необходимое для разрыва нитки, увеличится в 2 раза. Все потому, что условная площадь сечения стержня, работающего на растяжение, увеличится при складывании нитки в 2 раза.
Таким образом известная пословица: «где тонко, там и рвется» в переводе на язык теории сопротивления материалов будет звучать примерно так: «при действии растягивающих нормальных напряжений разрушение материала, обладающего постоянным сопротивлением растяжению по всей длине, будет происходить в сечении с минимальной площадью». Это особенно актуально для стержней с изменяющейся по длине площадью сечения.
С учетом различных факторов формула (525.1) может иметь другой вид:
Nγn/Fn = σ ≤ Rрγs (512.1.2)
где γn — коэффициент надежности по нагрузке (как правило больше единицы), Fn — минимальная площадь сечения (с учетом возможных ослаблений отверстиями, пазами и т.п.), γs — коэффициент условий работы (как правило меньше единицы).
Т.е. теория сопротивления материалов допускает, что нормальные напряжения в стержне могут быть равны расчетному сопротивлению материала на растяжение, умноженному на коэффициент условий работы.
Пример расчета стержня на растяжение
Дано: На стальной стержень (см. рис.525.1.а)) с расчетным сопротивлением Rp = 2250 кг/см2 действует продольная растягивающая сила N = 30 тонн. Коэффициент надежности по нагрузке γn = 1.05, коэффициент условий работы γs = 0.9. Собственным весом стержня в виду его незначительности по сравнению с действующей нагрузкой для упрощения расчетов можно пренебречь. Предполагается, что нагрузка прикладывается по всей площади поперечного сечения стержня, т.е. возникающие нормальные напряжения будут равномерно распределенными по всей площади сечения.
Требуется: Подобрать диаметр стержня.
Решение:
1. Определяем требуемую площадь сечения стержня, преобразовав формулу (525.1.2)
F = Nγn/Rpγs = 30000·1.05/(2250·0.9) = 15.56 см2.
2. Определяем диаметр стержня
d = √4F/п = √4·15.56/3.14 = 4.45 см
Как видим сам расчет занимает гораздо меньше времени, чем описание физических характеристик используемых данных и даже формулировка условия задачи.
Источник