Сопромат примеры решения задачи на растяжение сжатие сопромат

Пример решения задачи на растяжение и сжатие

.

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) с размерами см; см, см и площадью поперечного сечения нижнего участка см2, а верхнего – см2 нагружен внешними осевыми силами кН и кН. Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Расчетная схема для задачи на растяжение и сжатие

рис 3.2

Решение пример задачи на растяжение и сжатие

Определяем значение опорной реакции , возникающей в заделке

Учитывая, что , направим опорную реакцию вниз. Тогда из уравнения равновесия находим:

кН.

Строим эпюру продольных сил

Разбиваем длину стержня на три участка. Границами участков являются сечения, в которых приложены внешние силы и (или) изменяется размер поперечного сечения стержня.

Воспользуемся методом сечений. Делаем по одному сечению в произвольном месте каждого из трех участков стержня.

Cечение 1 – 1. Отбросим (или закроем листком бумаги) верхнюю часть стержня (рис. 3.2, б). Само сечение 1 – 1 мысленно считаем неподвижным. Мы видим, что внешняя сила растягивает рассматриваемую нижнюю часть стержня. Отброшенная нами верхняя часть стержня противодействует этому растяжению. Это противодействие мы заменим внутренней продольной силой , направленной от сечения и соответствующей растяжению. Разрушения стержня не произойдет только в том случае, если возникающая в сечении 1 – 1 внутренняя продольная сила уравновесит внешнюю силу . Поэтому очевидно, что

кН.

Сечение 2 – 2. Внешняя сила растягивает рассматриваемую нами нижнюю часть стержня, а сила ее сжимает (напомним, что 2 – 2 мы мысленно считаем неподвижным). Причем, согласно условию задачи, . Чтобы уравновесить эти две силы, в сечении 2 – 2 должна возникнуть внутренняя сила , противодействующая сжатию, то есть направленная к сечению. Она равна:

кН.

Сечение 3 – 3. Отбросим теперь часть стержня, расположенную ниже этого сечения. Внутренняя продольная сила должна уравновесить внешнюю (реактивную) сжимающую силу . Поэтому она направлена к сечению и равна:

кН.

Легко убедиться в том, что полученный результат не изменится, если мы отбросим не нижнюю, а верхнюю часть стержня. В этом случае продольная сила также противодействует сжатию. Она равна:

кН.

При построении эпюры продольных сил будем пользоваться следующим правилом знаков: внутренняя продольная сила, возникающая в поперечном сечении стержня, считается положительной, если она противодействует растяжению стержня, и отрицательной, если она противодействует его сжатию. Оно вводится для того, чтобы можно было наглядно видеть, какая часть стержня испытывает деформацию растяжения, а какая часть – деформацию сжатия. Это обстоятельство может оказаться крайне важным, в частности для стержней из хрупкого материала, которые имеют разные допускаемые напряжения на растяжение и на сжатие.

Таким образом, мы установили, что в любом сечении нижнего участка стержня внутренняя продольная сила противодействует растяжению и равна кН. В любом сечении среднего и верхнего участков стержня имеет место деформация сжатия, поэтому кН.

Для построения эпюры продольных сил проводим тонкой линией ось, параллельную оси стержня z (рис. 3.2, д). Вычисленные значения продольных сил в выбранном масштабе и с учетом их знака откладываем от этой вертикальной оси. В пределах каждого из участков стержня продольная сила остается постоянной, поэтому мы как бы «заштриховываем» горизонтальными линиями соответствующий участок.

Отметим, что каждая линия «штриховки» (то есть ордината эпюры) в принятом масштабе дает значение продольной силы в соответствующем поперечном сечении стержня.

Полученную эпюру обводим жирной линией.

Анализируя полученную эпюру, мы видим, что в местах приложения внешних сил на эпюре имеет место скачкообразное изменение продольной силы на величину, равную значению соответствующей внешней силы. Причем изменение поперечного размера стержня, как это видно из рис. 3.2, д, никак не сказывается на характере эпюры .

Строим эпюру нормальных напряжений

Нормальное напряжение, возникающее в k–м поперечном сечении стержня при растяжении (сжатии), вычисляется по следующей формуле

,

где и – продольная сила и площадь k–го поперечного сечения стержня соответственно.

В первом поперечном сечении стержня нормальное напряжение равно

кН/см2,

во втором –

кН/см2,

в третьем –

кН/см2.

Строим по вычисленным значениям эпюру (рис. 3.2, е). В пределах каждого из участков стержня напряжения постоянны, то есть эпюра напряжений параллельна оси. Заметим, что в отличие от эпюры N, на эпюре «скачок» имеет место не только в местах приложения внешних сил, но и там, где происходит изменение размеров поперечного сечения стержня.

Читайте также:  Сколько заживает растяжение мышц бедра

Оцениваем прочность стержня

Сопоставляем наибольшее (по модулю) нормальное напряжение , которое в нашем примере возникает во втором сечении стержня, с допускаемым напряжением . Напомним, что допускаемое напряжение представляет собой долю от предельного напряжения , то есть от напряжения, при котором начинается разрушение материала. Разрушение стали, как пластичного материала, начинается при появлении значительных остаточных деформаций. Поэтому для стали предельное напряжение равно пределу текучести: . Тогда

кН/см2.

Условие прочности имеет вид . В нашем случае

кН/см2 > кН/см2,

следовательно, прочность стержня на втором участке не обеспечена.

Таким образом, площадь поперечного сечения стержня на втором участке, равную см2, нам необходимо увеличить.

Несложный анализ показывает, что на других участках стержня условие прочности выполняется.

Из условия прочности определяем требуемую площадь поперечного сечения стержня на втором участке:

см2.

Принимаем на втором участке см2.

Вычисляем удлинение всего стержня

При переменных по длине стержня значениях продольной силы и площади поперечного сечения удлинение вычисляется по формуле

,

где E – модуль Юнга, а – длина соответствующего участка стержня.

Тогда

см.

Таким образом, длина стержня уменьшается на мм.

Задача по сопромату на растяжение и сжатие для самостоятельного решения

Условие задачи на растяжение и сжатие

Стальной стержень (модуль Юнга кН/см2) находится под действием внешних осевых сил и (рис. 3.1). Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .

Схемы для задачи на растяжение и сжатие

Исходные данные к задаче на растяжение и сжатие

Номер схемы

F, см2

a, м

b, м

c, м

P, кН

1

2,0

1,2

1,4

1,6

11

2

2,2

1,4

1,6

1,4

12

3

2,4

1,8

1,6

1,2

13

4

2,6

1,6

2,0

1,0

14

5

2,8

2,0

1,8

1,2

15

6

3,0

2,2

1,6

1,4

16

7

3,2

2,4

1,4

1,6

17

8

3,4

2,6

1,2

1,8

18

9

3,6

2,8

1,0

1,4

19

3,8

2,4

1,6

1,2

20

Источник

Первая тема сопротивления материалов — это растяжение-сжатие. Задачи на растяжение сжатие в сопромате — довольно простая тема. И сейчас я это докажу.

Прежде всего растяжение — мы интуитивно понимаем — удлинение, увеличение размеров. А сжатие — уменьшение длины, укорочение.

При изучении растяжения-сжатия используется один и тот же подход ко всем задачам, ко всем расчетным схемам. А именно — метод сечений. О нем мы расскажем в отдельной записи. А пока, ниже вы видите видео уроки на эту тему. Надеюсь вам будет полезно и удобно изучать эту тему со мной.

Что такое растяжение-сжатие

Прежде всего нужно сказать, что растяжение-сжатие — это такой вид деформации (относительного изменения размеров), при котором одно плоское сечение относительно другого удаляется параллельно исходному положению.

Растяжение-сжатие в сопротивлении материалов - Деформация растяжения-сжатияПример деформации растяжения-сжатия. Схема приложения

Все это звучит сложно, но посмотрите видео и Вы все поймете!

Подход в решении задач на растяжение-сжатие

Видео урок — Как отличить растяжение от сжатия. Приводится объяснение основного метода расчета задач по сопротивлению материалов — метод сечений

В первом видео уроке объясняется сам процес возникновения деформации растяжения-сжатия. Как отличить растяжение от сжатия. Приводится объяснение основного метода расчета задач по сопротивлению материалов — метод сечений.

Здесь рассмотрены задачи для стержня, имеющего сплошное поперечное сечение. На такой стержень может действовать как одна сила, так и несколько.

Растяжение-сжатие в стержневых конструкциях

видео урок Растяжение-сжатие в стержневых конструкциях

Во втором видео уроке приводится решение задачи на растяжение-сжатие для системы стержневых конструкций. Приведены методика и план решения задачи по сопротивлению материалов на тему растяжение-сжатие.

Учет собственного веса в задачах сопротивления материалов на растяжение-сжатие

видео урок — Учет собственного веса в задачах сопротивления материалов на растяжение-сжатие

Третья задача на растяжение-сжатие стержней с учетом собственного веса. Приведен пример решения задачи и доступно рассказывается как можно учесть собственный вес конструкции при расчете на растяжение-сжатие.

Растяжение-сжатие с учетом собственного веса в стержнях с двумя участками

Задача на растяжение сжатие, более сложный случай. В этой задаче стержень состоит из нескольких участков. Здесь необходимо учитывать собственный вес — для стержня, испытывающего деформацию растяжения или сжатия, который состоит из нескольких участков. Здесь же приводится методика построения эпюр внутренних усилий при этих видах деформации.

Читайте также:  Проверка стержня на растяжение

Удлинение стержня при деформации растяжения-сжатия

видео урок — Удлинение стержня при деформации растяжения-сжатия

Приведен пример расчета на растяжение-сжатие когда нужно определить удлинение стержня. Удлинение (при растяжении) или укорочение (при сжатии) — это изменение размеров стержня вдоль оси приложения продольной нагрузки. Об этом в пятом видео уроке.

Определение удлинения стержня с учетом собственного веса при растяжении-сжатии

Определение изменения длины стержня с учетом собственного веса. Особенности формулы для определения удлинения (изменения длины) при растяжении-сжатии с учетом собственного веса.

Итак на этой странице приведены видеоуроки на основные темы в растяжении-сжатии. Планируется запись еще темы в которой будут рассматриваться статически неопределимые задачи на растяжение-сжатие.

Конечно это не все задачи, которые может понадобиться решить реальному инженеру, как инженеру-механику, так и инженеру-строителю. Встречаются разные случаи, когда нужно применять сообразительность.

Метод сечений в задачах на растяжение сжатие

Однако подход в решении всех задач на растяжение-сжатие всегда одинаков и состоит из следующих шагов:

  • рассекаем наш стержень (а именно так называют элемент конструкции, который испытывает деформацию растяжения-сжатия)
  • рассматриваем равновесие одной из частей стержня рассматривая внешние, приложенные к стержню усилия и внутреннее усилие, которое формируется силами межатомного взаимодействия
  • внутреннее усилие направляем от сечения рассматриваемой части стержня к оставшейся части стержня (для статически определимых систем) или используя интуицию и опыт направляем так, чтобы направление внутреннего усилия совпало с направлением действия деформации (на растяжение или на сжатие)
  • из суммы проекций на соответствующую ось или, если это возможно,  суммы моментов относительно точки находим нужное внутреннее усилие.

В статически неопределимой задаче нужно к указанным действиям добавить еще одно уравнение которое называется деформационным.

Растяжение-сжатие в сопротивлении материалов одна из наиболее простых тем, разнообразие задач, правда, довольно широко. Но именно растяжение-сжатие в сопротивлении материалов учит тому, как нужно правильно и везде одинаково, несмотря на разнообразие расчетных схем, применять один и тот же подход к решению — метод сечений. В классическом курсе сопротивления материалов это первая тема — растяжение-сжатие.

список видео уроков по сопромату в котором темы раскрываются одна за другой. рекомендую для изучения сопромата

Ну а если возникнут сложности, если Вы предпочитаете заниматься индивидуально — обратитесь ко мне — помогу!

skype: zabolotnyiAN,

e-mail: zabolotnyiAN@gmail.com

Остались вопросы?

Все вопросы, которые у Вас могут возникнуть  — рассмотрены в рубрике Условия и цена онлайн обучения сопромат и строймех. Для связи со мной используйте страницу «Контакты» или всплывающий внизу справа значок мессенджера.

Рубрики

Задачи по сопротивлению материалов с решениями, примеры, Растяжение — сжатие, Сопромат онлайн

Метки

внутренние усилия, задачи курса сопротивление материалов, классический курс сопротивления материалов в решениях задач, краткий курс сопротивления материалов, курс сопромата для чайников, Построение эпюр продольных сил, растяжение сжатие сопромат, растяжение сжатие сопротивление материалов, сопромат для чайников, Сопромат Примеры решения задач на растяжение-сжатие, сопромат репетитор, Сопромат это легко, Сопротивление материалов, сопротивление материалов краткий курс, сопротивление материалов примеры решения задач, эпюры растяжения сжатия

Источник

Сопромат

Статья посвящена решению сопромата, в частности основным разделам по которым решаются задачи. Дано краткое описание того, что необходимо делать, находить, определять в этих задачах каждого раздела. Также собраны ссылки на примеры решения задач по основным разделам сопромата:

  • Геометрические характеристики
  • Растяжение (сжатие)
  • Кручение
  • Изгиб

На данной страничке собраны ссылки на основные рубрики данного сайта с примерами решения задач по сопромату.

  1. Стержневые системы
  2. Пространственные системы (рамы)
  3. Валы

Классификация по виду деформации:

  1. Изгиб
  2. Кручение
  3. Изгиб с кручением 
  4. Растяжение (сжатие)

Примеры решения задач на геометрические характеристики

prostoe-sechenie-simmetrichnoeПри решении задач, связанных с геометрическими характеристиками, для плоских сечений могут определяться такие вещи как центр тяжести, осевой момент инерции, момент сопротивления, радиус инерции и т.д. Причем задачи могут сильно разница по сложности, все зависит от самого поперечного сечения. Например, для плоского сечения, у которого имеется две оси симметрии, можно сразу сказать, где у него находится центр тяжести, соответственно и положение главных центральных осей. Можно сразу определить главные моменты инерции, потом и момент сопротивления, и радиус инерции.

Читайте также:  Признаки растяжения цепи грм альмера н16

Для сечения, у которого только одна ось симметрии, центр тяжести будет лежать на этой оси, но не лежать на другой оси, одну из координат придется вычислять, затем также определять остальные важные геометрические характеристики.prosto-sechenie-s-odnoy-osyu-simetrii Но в задачах могут встречаться и совсем не симметричные поперечные сечения. У простых сечений, которых есть хотя бы одна ось симметрии,  вертикальная и горизонтальная осевые линии, проходящие через центр тяжести, являются главными центральными осями, то есть осями относительно которых осевой момент максимален и минимален. У сложных поперечных сечений, без осей симметрий, главные центральные оси проходят через центр тяжести, но находятся под некоторым углом к вертикальной или горизонтальной оси. Для решения такой задачи, необходимо сначала определить моменты инерции относительно вертикальной и горизонтальной оси проходящей через центр тяжести, центробежный момент инерции, затем уже можно определить тот самый угол, и численные значения главных центральных моментов инерции.

slozhnoe-nesimmetrichnoe-sechenie

Примеры решения задач на растяжение (сжатие)

Продольная сила-внутреннее усилиеНа тему растяжения (сжатия) можно выделить 4 основных типа задач: статически определимый и неопределимый брус, статически определимая и неопределимая стержневая система. Во всех данных типах задач обязательно вычисляется внутреннее усилие – продольная сила, возникающая в нагруженных элементах при центральном растяжении (сжатии).

В статически неопределимых задачах, перед тем как определить продольные силы обязательно раскрывается статическая неопределимость. После определения продольных усилий в решении задачи может:

  1. Вычисляться площадь / площади поперечных сечений конструкции из условия прочности.
  2. Вычисляться нормальное напряжение / напряжения. По вычисленным напряжениям делается вывод о прочности конструкции путем сравнения расчетного максимального напряжения с допустимым напряжением.

opredelenie-ploshhadi-poperechnogo-secheniya-ili-napryazheniy

Часто по условию задачи требуется определить осевое перемещение поперечного сечения, найти  удлинение (укорочение) стержня.

opredelenie-udlinenie-ukorocheniya

В условии задач обычно требуют строить эпюры от описываемых выше величин: продольной силы, нормального напряжения и перемещения.

epyuryi-prodolnyih-sil-normalnyih-napryazheniy

Примеры решения задач на кручение

krutyashhie-momentyiЗадачи на чистое кручение сильно схожи с задачами растяжение (сжатие). В элементах, работающих на кручение, чаще всего валов, возникает также как и при растяжении один внутренний силовой фактор, только не продольная сила, а крутящий момент. Соответственно вместо нормальных напряжений, уже появляются касательные напряжения, которые распределены в поперечном сечении не равномерно, в отличие от нормальных напряжений, появляющихся при растяжении (сжатии). Как видно из рисунка, максимальные напряжения находятся в наиболее удаленных точках сечения.kasatelnyie-napryazheniya-pri-kruchenii

Задачи могут быть проектировочными и проверочными. В первых определяются оптимальные размеры детали, удовлетворяющие условию прочности, а во вторых проверяется прочности детали работающей под заданной нагрузкой.

Помимо крутящих моментов, касательных напряжений, в задачах  часто требуют определять относительные углы закручивания или углы поворота поперечных сечений.

Задачи на кручение могут быть как статически определимыми, так и неопределимыми. Статическая неопределимость раскрывается точно так же, как и при центральном растяжении. Составляется дополнительное уравнение совместности деформаций к уравнению равновесия, и выражаются реактивные моменты.

Примеры решения задач на изгиб

Задачи на поперечный изгиб очень разнообразны, перейдя по ссылке выше можно посмотреть примеры задач на этот вид деформации. В рамках этого блока будем говорить именно о поперечном изгибе, его еще называют плоским или прямым. О более сложных видах изгиба (изгиб с кручением, косой изгиб) поговорим ниже, в рамках раздела – сложное сопротивление. При поперечном изгибе деталей в их поперечных сечениях появляются два внутренних силовых фактора: поперечная сила и изгибающий момент.izgibashhiy-moment-i-poperechnaya-sila

А значит и два типа напряжений: касательные и нормальные. При проведении прочностных расчетов учитываются оба вида напряжений, но особую важность представляют напряжения нормальные, т.к. они, чаще всего, в несколько раз превосходят касательные. Нормальные напряжения можно определить по изгибающему моменту, а касательные определяют с помощью формулы Журавского по поперечной силе.

epyura-normalnyih-i-kasatelnyih-napryazheniy

Расчеты на прочность при поперечном изгибе могут быть проверочными и проектировочными. Также часто производят расчеты на грузоподъемность, то есть вычисляют нагрузку, которую может выдержать конструкция, работающая на изгиб.

При решении задач на изгиб могут производиться расчеты на жесткость. Для этого определяют максимальное перемещение или угол поворота поперечного сечения различными методами: Мора-Верещагина, Мора-Симпсона, методом начальных параметров, методом конечных разностей, методом Кастильяно и д.р. После определения перемещений их сравнивают с допустимыми перемещениями. Также иногда в задачах требуют определить размеры конструкции из условия жесткости.

Сопромат

Источник