Сопромат лабораторная работа на растяжение сжатие
ЛАБОРАТОРНЫЕ РАБОТЫ ПО СОПРОМАТУ, ЧАСТЬ 1
Работы №1,2,3,4,5,6
1. Механические характеристики материалов, используемые при расчетах на прочность, определяются экспериментально на стандартных образцах.
2. Основными являются испытания на растяжение, сжатие, кручение. В результате испытаний получается кривая в координатах нагрузка – перемещение, называемая характеристикой образца.
3. диаграммой или характеристикой материала — кривая, построенная в координатах напряжение – деформация, С помощью определенных формул
Лабораторная работа №1
ИСПЫТАНИЕ НА РАСТЯЖЕНИЕ ОБРАЗЦОВ МАТЕРИАЛА
Для испытаний на растяжение используется десятикратный образец (рис.1.1 в журнале), у которого l0 = 10 d0. Здесь l0 — длина базы, т.е. размера, изменения которого фиксируются при эксперименте как Δl – удлинение образца, d0 – первоначальный диаметр образца. Образец растягивают до тех пор, пока он не разрушится. После испытаний получается характеристика образца в координатах F, Δl. С помощью формул и из характеристики образца получается диаграмма (характеристика) материала в координатах — напряжение, — деформация.
Испытание малоуглеродистой стали — типичного пластичного материала
Участки характеристики образца:
ОА — линейный участок, материал подчиняется закону Гука, удлинение образца определяется по формуле ; до точки В деформации упруги, то есть они полностью исчезают после разгрузки;
CD — горизонтальный участок диаграммы — площадка текучести, деформации интенсивно нарастают при постоянной нагрузке;
DE — зона упрочнения: в кристаллах металла произошла перестройка, и материал может снова сопротивляться нагружению;
EG — зона разрушения.
В точке Е при в образце возникает местное утонение — шейка. Дальнейшие деформации сосредотачиваются в районе шейки, которая при этом интенсивно утоняется, деформировать образец становится легче и поэтому нагрузка уменьшается. После разрыва образца материал в районе шейки теплый. Это зона больших пластических деформаций, при их образовании материал нагревается.
На характеристике образца с помощью геометрических построений находят характерные точки, соответствующие силам Fпц, Fy, Fт, Fmax, Fраз. Затем по формулам сопромата вычисляют соответствующие напряжения и строят диаграмму (характеристику) материала, с помощью которойопределяют механические характеристики материала:
— предел пропорциональности — наибольшее напряжение, до которого справедлив закон Гука (s = E e);
— предел упругости — наибольшее напряжение, до которого деформации полностью упруги, то есть целиком исчезают при разгрузке;
— предел текучести — напряжение, при котором деформации интенсивно нарастают при постоянной нагрузке;
— предел прочности — напряжение, численно равное максимальной нагрузке, деленной на первоначальную площадь сечения образца.
Характеристика стали называется условной, так как она получена на основании формул и , где A0 и l0 — первоначальная площадь сечения и первоначальная длина образца, в то время как при растяжении изменяются как длина образца, так и размеры его сечения. Если учитывать эти изменения, то получим истинную диаграмму, изображенную тонкой линией на рис. 1.12. Только на истинной диаграмме есть напряжение при разрыве , это самое большое значение напряжения во время испытаний. Amin — площадь сечения шейки в месте разрыва, , dmin — диаметр шейки в месте разрыва. При растяжении стальной образец интенсивно деформируется. Остаточное удлинение после разрыва достигает 30%.
Образец после разрыва
На условной характеристике напряжения при разрыве нет!
В конструкциях, как правило, материал работает при напряжениях, меньших предела текучести. Как видно из рис. 1.12, условная и истинная диаграммы практически совпадают и до значения напряжения, равного пределу текучести sт. Поэтому на практике используют для расчетов условную диаграмму.
Если материал нагрузить за пределы упругости и разгрузить, то при разгрузке исчезнут только упругие деформации, а пластические останутся (рис. 1.14).
Закон разгрузки и повторного нагружения
Если нагрузить материал за пределы упругой зоны (точка К выше точки В, соответствующей пределу упругости, рис. 1.14), а затем разгрузить, то линия разгрузки KL будет параллельна первоначальному участку диаграммы ОА (точка А соответствует пределу пропорциональности). При вторичном нагружении (линия LK) материал сохраняет пропорциональную зависимость между нагрузкой F и удлинением Dl (то есть между s и e) вплоть до максимального напряжения первичного нагружения (точка K), а затем следует по первоначальной кривой КЕ. Это свойство материалов используется на практике, например, при заневоливании пружин. После изготовления пружины нагружают за пределы упругости, увеличивая тем самым величину осадки пружины, пропорциональную силе.
На рис. 1.14:
OАВK — линия первичного нагружения;
KL — линия разгрузки;
OL — пластическое или остаточное удлинение образца;
LM — упругое удлинение, исчезающее при разгрузке;
LKE — линия вторичного нагружения.
Таким образом, удлинение образца в точке K (отрезок ОM на рис. 1.14) с помощью линии разгрузки KL,параллельной первоначальному линейному участкудиаграммы ОА, можно разделить на упругую часть (LM) и пластическую часть (OL).
Условный или технический предел текучести
Некоторые пластичные материалы, например, алюминий, не имеют площадки текучести на диаграмме. Для таких материалов используется условный или технический предел текучести
s0,2 — это напряжение, при котором остаточная деформация равна 0,2%, то есть величина 0,002 в масштабе диаграммы, рис. 1.15.
Для определения s0,2 сначала отложим по оси e величину остаточной деформации, равную 0,002 в масштабе диаграммы. Затем проведем LK÷÷ ОА. Получим пересечение с кривой (точка K). Соответствующее точке K напряжение и есть условный или технический предел текучести s0,2.
Лабораторная работа №2
ИСПЫТАНИЕ НА СЖАТИЕ ОБРАЗЦОВ МАТЕРИАЛА
Для испытаний на сжатие используется цилиндрический образец, , рис. 2.11.
Испытание чугуна
— предел прочности чугуна при сжатии.
Чугун при сжатии разрушается по поверхностям, наклоненным примерно под углом 45° к оси образца, рис. 2.14. Именно в этих плоскостях действуют максимальные касательные напряжения при растяжении, сжатии, и чугун разрушается от сдвигов в кристаллической решетке по этим плоскостям.
Чугун работает на сжатие лучше, чем на растяжение, предел прочности чугуна при сжатии больше предела прочности при растяжении , рис. 2.15.
На рис. 2.16 приведены характеристики стали и чугуна при сжатии.
Предел текучести стали при сжатии меньше предела прочности чугуна при сжатии .
Лабораторная работа №3
ИСПЫТАНИЕ НА КРУЧЕНИЕ ОБРАЗЦОВ МАТЕРИАЛА
Для испытания материалов при чистом сдвиге (при кручении) используют цилиндрический образец. В процессе испытаний записывается диаграмма кручения — зависимость M = f(j). М — это нагрузка, то есть момент, скручивающий образец, j — угол закручивания образца, рис. 3.11
(рис. 3.1 в журнале).
Лабораторная работа № 4
ОПРЕДЕЛЕНИЕ УПРУГИХ ПОСТОЯННЫХ ИЗОТРОПНЫХ МАТЕРИАЛОВ
Коэффициентом Пуассона ν называется модуль отношения поперечной относительной деформации к продольной: . Для всех материалов коэффициент Пуассона изменяется в пределах ( ν = 0 для пробки и ν = 0,5 для резины).
Модулем упругости первого рода или модулем Юнганазывается коэффициент пропорциональности между напряжениями и деформациями в начальной стадии нагружения материала или коэффициент пропорциональности в законе Гука. Этот коэффициент характеризует неподатливость материала к деформациям.
Для экспериментального определения коэффициента Пуассона надо замерить поперечную и продольную деформации в растянутом плоском образце (рис. 4.2 в журнале).
Деформация измеряется электрическим тензометром, который состоит из датчика омического сопротивления, или тензорезистора, и электронного усилителя деформации, который представляет собой мостик Уитстона, рис. 4.11 (рис.4.4 в журнале).
Мостик это четыре сопротивления как четыре стороны квадрата. Одна диагональ этого квадрата – источник питания, другая диагональ – гальванометр. При отношении сопротивлений мостик сбалансирован и по диагонали не протекает ток, стрелка гальванометра стоит на нуле. Мостик выйдет из баланса, когда изменится одно (или несколько) из сопротивлений моста и нарушится вышеприведенное соотношение. При этом стрелка гальванометра отклоняется. Одно из сопротивлений моста это датчик. Датчик (или тензорезистор) это плоская спираль из тонкой константановой проволоки, помещенная между двумя полосками бумаги. Датчик приклеивается к образцу. При растяжении образца растягивается и проволока датчика, изменяется его омическое сопротивление. Мостик выходит из баланса, стрелка гальванометра отклоняется на величину, пропорциональную изменению сопротивления датчика или на величину, пропорциональную деформации слоя материала, к которому приклеен датчик. Чтобы привести мостик в баланс, вращаем ручку реохорда (т.е. изменяем другие сопротивления) до тех пор, пока мостик не сбалансируется и стрелка гальванометра не встанет на ноль. Снимаем показания реохорда. Разность между последующим и предыдущим показаниями реохорда, умноженная на цену деления, и есть величина деформации, соответствующая приложенной нагрузке.
Одно из сопротивлений мостика это компенсационный датчик. Он не нагружен, но реагирует на изменение температуры окружающей среды таким же образом, как и рабочий датчик. Находясь в плече, противоположном рабочему датчику, компенсационный датчик исключает температурный фактор из эксперимента.
Лабораторная работа №6
КОСОЙ ИЗГИБ
Если плоскость изгибающего момента не проходит через главную ось сечения, то такой вид нагружения называется косым изгибом. Главными называются оси, относительно которых центробежный момент инерции равен нулю ( ), а осевые моменты инерции имеют экстремальное значение, то есть один из них это Jmax, а другой Jmin. Заметим, что ось симметрии всегда является главной осью, а вторая главная ось ей перпендикулярна и в наших задачах проходит через центр тяжести сечения.
При косом изгибе балка гнется не в плоскости действия изгибающего момента
(т.е. не в той плоскости, в которой ее гнут), а в некоторой другой, более близкой к плоскости минимальной жесткости.
Нейтральная линия проходит через центр тяжести сечения, но она не перпендикулярна моментной линии. Нейтральная линия отклоняется от перпендикулярного положения к оси минимум. Моментная линия это след моментной плоскости на поперечном сечении.
Определение напряжения
.Для определения напряжений при косом изгибе раскладываем изгибающий момент по главным осям. Следует помнить, что момент носит индекс той оси, вокругкоторой он действует. Проведя нейтральную линию, находим опасную точку как наиболее удаленную от нейтральной линии. Максимальное напряжение в этой точке (назовем ее точкой А) определяем как сумму напряжений от каждого момента отдельно по формуле
, где xA и yA – координаты опасной точки A относительно главных осей x, y.
В нашей задаче разложим силу по главным осям x, y, получим составляющие (рис.1).
Построив эпюры, определим изгибающие моменты в заданном сечении на расстоянии l1 от свободного конца балки
В прямоугольном сечении опасная будет точка в углу (при любом положении нейтральной линии). Напряжение в этой угловой точке
Определение перемещения
Перемещение вычисляем как геометрическую сумму перемещений по главным осям (рис.2).
Перемещение вдоль главной оси определим, перемножив по правилу Верещагина эпюры от нагрузки и от единичного фактора (смотри рис.)
, тогда
.
ЛАБОРАТОРНЫЕ РАБОТЫ ПО СОПРОМАТУ, ЧАСТЬ 1
Работы №1,2,3,4,5,6
1. Механические характеристики материалов, используемые при расчетах на прочность, определяются экспериментально на стандартных образцах.
2. Основными являются испытания на растяжение, сжатие, кручение. В результате испытаний получается кривая в координатах нагрузка – перемещение, называемая характеристикой образца.
3. диаграммой или характеристикой материала — кривая, построенная в координатах напряжение – деформация, С помощью определенных формул
Лабораторная работа №1
ИСПЫТАНИЕ НА РАСТЯЖЕНИЕ ОБРАЗЦОВ МАТЕРИАЛА
Для испытаний на растяжение используется десятикратный образец (рис.1.1 в журнале), у которого l0 = 10 d0. Здесь l0 — длина базы, т.е. размера, изменения которого фиксируются при эксперименте как Δl – удлинение образца, d0 – первоначальный диаметр образца. Образец растягивают до тех пор, пока он не разрушится. После испытаний получается характеристика образца в координатах F, Δl. С помощью формул и из характеристики образца получается диаграмма (характеристика) материала в координатах — напряжение, — деформация.
Испытание малоуглеродистой стали — типичного пластичного материала
Участки характеристики образца:
ОА — линейный участок, материал подчиняется закону Гука, удлинение образца определяется по формуле ; до точки В деформации упруги, то есть они полностью исчезают после разгрузки;
CD — горизонтальный участок диаграммы — площадка текучести, деформации интенсивно нарастают при постоянной нагрузке;
DE — зона упрочнения: в кристаллах металла произошла перестройка, и материал может снова сопротивляться нагружению;
EG — зона разрушения.
В точке Е при в образце возникает местное утонение — шейка. Дальнейшие деформации сосредотачиваются в районе шейки, которая при этом интенсивно утоняется, деформировать образец становится легче и поэтому нагрузка уменьшается. После разрыва образца материал в районе шейки теплый. Это зона больших пластических деформаций, при их образовании материал нагревается.
На характеристике образца с помощью геометрических построений находят характерные точки, соответствующие силам Fпц, Fy, Fт, Fmax, Fраз. Затем по формулам сопромата вычисляют соответствующие напряжения и строят диаграмму (характеристику) материала, с помощью которойопределяют механические характеристики материала:
— предел пропорциональности — наибольшее напряжение, до которого справедлив закон Гука (s = E e);
— предел упругости — наибольшее напряжение, до которого деформации полностью упруги, то есть целиком исчезают при разгрузке;
— предел текучести — напряжение, при котором деформации интенсивно нарастают при постоянной нагрузке;
— предел прочности — напряжение, численно равное максимальной нагрузке, деленной на первоначальную площадь сечения образца.
Характеристика стали называется условной, так как она получена на основании формул и , где A0 и l0 — первоначальная площадь сечения и первоначальная длина образца, в то время как при растяжении изменяются как длина образца, так и размеры его сечения. Если учитывать эти изменения, то получим истинную диаграмму, изображенную тонкой линией на рис. 1.12. Только на истинной диаграмме есть напряжение при разрыве , это самое большое значение напряжения во время испытаний. Amin — площадь сечения шейки в месте разрыва, , dmin — диаметр шейки в месте разрыва. При растяжении стальной образец интенсивно деформируется. Остаточное удлинение после разрыва достигает 30%.
Образец после разрыва
На условной характеристике напряжения при разрыве нет!
В конструкциях, как правило, материал работает при напряжениях, меньших предела текучести. Как видно из рис. 1.12, условная и истинная диаграммы практически совпадают и до значения напряжения, равного пределу текучести sт. Поэтому на практике используют для расчетов условную диаграмму.
Если материал нагрузить за пределы упругости и разгрузить, то при разгрузке исчезнут только упругие деформации, а пластические останутся (рис. 1.14).
Закон разгрузки и повторного нагружения
Если нагрузить материал за пределы упругой зоны (точка К выше точки В, соответствующей пределу упругости, рис. 1.14), а затем разгрузить, то линия разгрузки KL будет параллельна первоначальному участку диаграммы ОА (точка А соответствует пределу пропорциональности). При вторичном нагружении (линия LK) материал сохраняет пропорциональную зависимость между нагрузкой F и удлинением Dl (то есть между s и e) вплоть до максимального напряжения первичного нагружения (точка K), а затем следует по первоначальной кривой КЕ. Это свойство материалов используется на практике, например, при заневоливании пружин. После изготовления пружины нагружают за пределы упругости, увеличивая тем самым величину осадки пружины, пропорциональную силе.
На рис. 1.14:
OАВK — линия первичного нагружения;
KL — линия разгрузки;
OL — пластическое или остаточное удлинение образца;
LM — упругое удлинение, исчезающее при разгрузке;
LKE — линия вторичного нагружения.
Таким образом, удлинение образца в точке K (отрезок ОM на рис. 1.14) с помощью линии разгрузки KL,параллельной первоначальному линейному участкудиаграммы ОА, можно разделить на упругую часть (LM) и пластическую часть (OL).
Условный или технический предел текучести
Некоторые пластичные материалы, например, алюминий, не имеют площадки текучести на диаграмме. Для таких материалов используется условный или технический предел текучести
s0,2 — это напряжение, при котором остаточная деформация равна 0,2%, то есть величина 0,002 в масштабе диаграммы, рис. 1.15.
Для определения s0,2 сначала отложим по оси e величину остаточной деформации, равную 0,002 в масштабе диаграммы. Затем проведем LK÷÷ ОА. Получим пересечение с кривой (точка K). Соответствующее точке K напряжение и есть условный или технический предел текучести s0,2.
Источник
Пример решения задачи на растяжение и сжатие
.
Условие задачи на растяжение и сжатие
Стальной стержень (модуль Юнга кН/см2) с размерами см; см, см и площадью поперечного сечения нижнего участка см2, а верхнего – см2 нагружен внешними осевыми силами кН и кН. Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .
Расчетная схема для задачи на растяжение и сжатие
рис 3.2
Решение пример задачи на растяжение и сжатие
Определяем значение опорной реакции , возникающей в заделке
Учитывая, что , направим опорную реакцию вниз. Тогда из уравнения равновесия находим:
кН.
Строим эпюру продольных сил
Разбиваем длину стержня на три участка. Границами участков являются сечения, в которых приложены внешние силы и (или) изменяется размер поперечного сечения стержня.
Воспользуемся методом сечений. Делаем по одному сечению в произвольном месте каждого из трех участков стержня.
Cечение 1 – 1. Отбросим (или закроем листком бумаги) верхнюю часть стержня (рис. 3.2, б). Само сечение 1 – 1 мысленно считаем неподвижным. Мы видим, что внешняя сила растягивает рассматриваемую нижнюю часть стержня. Отброшенная нами верхняя часть стержня противодействует этому растяжению. Это противодействие мы заменим внутренней продольной силой , направленной от сечения и соответствующей растяжению. Разрушения стержня не произойдет только в том случае, если возникающая в сечении 1 – 1 внутренняя продольная сила уравновесит внешнюю силу . Поэтому очевидно, что
кН.
Сечение 2 – 2. Внешняя сила растягивает рассматриваемую нами нижнюю часть стержня, а сила ее сжимает (напомним, что 2 – 2 мы мысленно считаем неподвижным). Причем, согласно условию задачи, . Чтобы уравновесить эти две силы, в сечении 2 – 2 должна возникнуть внутренняя сила , противодействующая сжатию, то есть направленная к сечению. Она равна:
кН.
Сечение 3 – 3. Отбросим теперь часть стержня, расположенную ниже этого сечения. Внутренняя продольная сила должна уравновесить внешнюю (реактивную) сжимающую силу . Поэтому она направлена к сечению и равна:
кН.
Легко убедиться в том, что полученный результат не изменится, если мы отбросим не нижнюю, а верхнюю часть стержня. В этом случае продольная сила также противодействует сжатию. Она равна:
кН.
При построении эпюры продольных сил будем пользоваться следующим правилом знаков: внутренняя продольная сила, возникающая в поперечном сечении стержня, считается положительной, если она противодействует растяжению стержня, и отрицательной, если она противодействует его сжатию. Оно вводится для того, чтобы можно было наглядно видеть, какая часть стержня испытывает деформацию растяжения, а какая часть – деформацию сжатия. Это обстоятельство может оказаться крайне важным, в частности для стержней из хрупкого материала, которые имеют разные допускаемые напряжения на растяжение и на сжатие.
Таким образом, мы установили, что в любом сечении нижнего участка стержня внутренняя продольная сила противодействует растяжению и равна кН. В любом сечении среднего и верхнего участков стержня имеет место деформация сжатия, поэтому кН.
Для построения эпюры продольных сил проводим тонкой линией ось, параллельную оси стержня z (рис. 3.2, д). Вычисленные значения продольных сил в выбранном масштабе и с учетом их знака откладываем от этой вертикальной оси. В пределах каждого из участков стержня продольная сила остается постоянной, поэтому мы как бы «заштриховываем» горизонтальными линиями соответствующий участок.
Отметим, что каждая линия «штриховки» (то есть ордината эпюры) в принятом масштабе дает значение продольной силы в соответствующем поперечном сечении стержня.
Полученную эпюру обводим жирной линией.
Анализируя полученную эпюру, мы видим, что в местах приложения внешних сил на эпюре имеет место скачкообразное изменение продольной силы на величину, равную значению соответствующей внешней силы. Причем изменение поперечного размера стержня, как это видно из рис. 3.2, д, никак не сказывается на характере эпюры .
Строим эпюру нормальных напряжений
Нормальное напряжение, возникающее в k–м поперечном сечении стержня при растяжении (сжатии), вычисляется по следующей формуле
,
где и – продольная сила и площадь k–го поперечного сечения стержня соответственно.
В первом поперечном сечении стержня нормальное напряжение равно
кН/см2,
во втором –
кН/см2,
в третьем –
кН/см2.
Строим по вычисленным значениям эпюру (рис. 3.2, е). В пределах каждого из участков стержня напряжения постоянны, то есть эпюра напряжений параллельна оси. Заметим, что в отличие от эпюры N, на эпюре «скачок» имеет место не только в местах приложения внешних сил, но и там, где происходит изменение размеров поперечного сечения стержня.
Оцениваем прочность стержня
Сопоставляем наибольшее (по модулю) нормальное напряжение , которое в нашем примере возникает во втором сечении стержня, с допускаемым напряжением . Напомним, что допускаемое напряжение представляет собой долю от предельного напряжения , то есть от напряжения, при котором начинается разрушение материала. Разрушение стали, как пластичного материала, начинается при появлении значительных остаточных деформаций. Поэтому для стали предельное напряжение равно пределу текучести: . Тогда
кН/см2.
Условие прочности имеет вид . В нашем случае
кН/см2 > кН/см2,
следовательно, прочность стержня на втором участке не обеспечена.
Таким образом, площадь поперечного сечения стержня на втором участке, равную см2, нам необходимо увеличить.
Несложный анализ показывает, что на других участках стержня условие прочности выполняется.
Из условия прочности определяем требуемую площадь поперечного сечения стержня на втором участке:
см2.
Принимаем на втором участке см2.
Вычисляем удлинение всего стержня
При переменных по длине стержня значениях продольной силы и площади поперечного сечения удлинение вычисляется по формуле
,
где E – модуль Юнга, а – длина соответствующего участка стержня.
Тогда
см.
Таким образом, длина стержня уменьшается на мм.
Задача по сопромату на растяжение и сжатие для самостоятельного решения
Условие задачи на растяжение и сжатие
Стальной стержень (модуль Юнга кН/см2) находится под действием внешних осевых сил и (рис. 3.1). Построить эпюры продольных сил и нормальных напряжений . Оценить прочность стержня, если предельное напряжение (предел текучести) кН/см2, а допускаемый коэффициент запаса . Найти удлинение стержня .
Схемы для задачи на растяжение и сжатие
Исходные данные к задаче на растяжение и сжатие
Номер схемы | F, см2 | a, м | b, м | c, м | P, кН |
1 | 2,0 | 1,2 | 1,4 | 1,6 | 11 |
2 | 2,2 | 1,4 | 1,6 | 1,4 | 12 |
3 | 2,4 | 1,8 | 1,6 | 1,2 | 13 |
4 | 2,6 | 1,6 | 2,0 | 1,0 | 14 |
5 | 2,8 | 2,0 | 1,8 | 1,2 | 15 |
6 | 3,0 | 2,2 | 1,6 | 1,4 | 16 |
7 | 3,2 | 2,4 | 1,4 | 1,6 | 17 |
8 | 3,4 | 2,6 | 1,2 | 1,8 | 18 |
9 | 3,6 | 2,8 | 1,0 | 1,4 | 19 |
3,8 | 2,4 | 1,6 | 1,2 | 20 |
Источник