Собственный вес в растяжении сжатии
Подбор сечений с учетом собственного веса (при растяжении и сжатии).
При установлении внешних сил, растягивающих или сжимающих элементы конструкций, мы до сих пор игнорировали собственный вес этих элементов. Возникает вопрос, не вносится ли этим упрощением расчета слишком большая погрешность? В связи с этим подсчитаем величины напряжений и деформаций при учете влияния собственного веса растянутых или сжатых стержней.
Пусть вертикальный стержень (Рис.1, а) закреплен своим верхним концом; к нижнему его концу подвешен груз Р. Длина стержня l, площадь поперечного сечения F, удельный вес материала и модуль упругости Е. Подсчитаем напряжения по сечению АВ, расположенному на расстоянии от свободного конца стержня.
а) б)
Рис.1. Исходная расчетная схема бруса а) и б) равновесие нижней отсеченной части.
Рассечем стержень сечением АВ и выделим нижнюю часть длиной с приложенными к ней внешними силами (Рис.1, б) грузом Р и ее собственным весом . Эти две силы уравновешиваются напряжениями, действующими на площадь АВ от отброшенной части. Эти напряжения будут нормальными, равномерно распределенными по сечению и направленными наружу от рассматриваемой части стержня, т. е. растягивающими. Величина их будет равна:
Таким образом, при учете собственного веса нормальные напряжения оказываются неодинаковыми во всех сечениях. Наиболее напряженным, опасным, будет верхнее сечение, для которого достигает наибольшего значения l; напряжение в нем равно:
Условие прочности должно быть выполнено именно для этого сечения:
Отсюда необходимая площадь стержня равна:
От формулы, определяющей площадь растянутого стержня без учета влияния собственного веса, эта формула отличается лишь тем, что из допускаемого напряжения вычитается величина .
Чтобы оценить значение этой поправки, подсчитаем ее для двух случаев. Возьмем стержень из мягкой стали длиной 10 м; для него , а величина . Таким образом, для стержня из мягкой стали поправка составит т. е. около 0,6%. Теперь возьмем кирпичный столб высотой тоже 10 м; для него , а величина Таким образом, для кирпичного столба поправка составит , т.е. уже 15%.
Вполне понятно, что влиянием собственного веса при растяжении и сжатии стержней можно пренебрегать, если мы не имеем дела с длинными стержнями или со стержнями из материала, обладающего сравнительно небольшой прочностью (камень, кирпич) при достаточном весе. При расчете длинных канатов подъемников, различного рода длинных штанг и высоких каменных сооружений (башни маяков, опоры мостовых ферм) приходится вводить в расчет и собственный вес конструкции.
В таких случаях возникает вопрос о целесообразной форме стержня. Если мы подберем сечение стержня так, что дадим одну и ту же площадь поперечного сечения по всей длине, то материал стержня будет плохо использован; нормальное напряжение в нем дойдет до допускаемого лишь в одном верхнем сечении; во всех прочих сечениях мы будем иметь запас в напряжениях, т. е. излишний материал. Поэтому желательно так запроектировать размеры стержня, чтобы во всех его поперечных сечениях (перпендикулярных к оси) нормальные напряжения были постоянны,
Такой стержень называется стержнем равного сопротивления растяжению или сжатию. Если при этом напряжения равны допускаемым, то такой стержень будет иметь наименьший вес.
Возьмем длинный стержень, подверженный сжатию силой Р и собственным весом (Рис.2). Чем ближе к основанию стержня мы будем брать сечение, тем больше будет сила, вызывающая напряжения в этом сечении, тем большими придется брать размеры площади сечения. Стержень получит форму, расширяющуюся книзу. Площадь сечения F будет изменяться по высоте в зависимости от , т. е. .
Установим этот закон изменения площади в зависимости от расстояния сечения от верха стержня.
Рис.2. Расчетная схема бруса равного сопротивления
Площадь верхнего сечения стержня определится из условия прочности:
и
где допускаемое напряжение на сжатие; напряжения во всех прочих сечениях стержня также должны равняться величине
Чтобы выяснить закон изменения площадей по высоте стержня, возьмем два смежных бесконечно близких сечения на расстоянии от верха стержня; расстояние между сечениями ; площадь верхнего назовем , площадь же смежного .
Приращение площади при переходе от одного сечения к другому должно воспринять вес элемента стержня между сечениями. Так как на площади он должен вызвать напряжение, равное допускаемому , то определится из условия:
Отсюда:
После интегрирования получаем:
При площадь ; подставляя эти значения, имеем:
и
Отсюда
,
Если менять сечения точно по этому закону, то боковые грани стержня получат криволинейное очертание (Рис.2), что усложняет и удорожает работу. Поэтому обычно такому сооружению придают лишь приближенную форму стержня равного сопротивления, например в виде усеченной пирамиды с плоскими гранями. Приведенный расчет является приближенным. Мы предполагали, что по всему сечению стержня равного сопротивления передаются только нормальные напряжения; на самом деле у краев сечения напряжения будут направлены по касательной к боковой поверхности.
В случае длинных канатов или растянутых штанг форму стержня равного сопротивления осуществляют тоже приближенно, разделяя стержень по длине на ряд участков; на протяжении каждого участка сечение остается постоянным (Рис.3) получается так называемый ступенчатый стержень.
Рис.3. Эквивалентный ступенчатый брус с приближением к модели бруса равного сопротивления
Определение площадей … при выбранных длинах производится следующим образом. Площадь поперечного сечения первого нижнего участка будет по формуле равна:
Чтобы получить площадь поперечного сечения второго участка, надо нагрузить его внешней силой Р и весом первого участка:
Для третьего участка к внешней силе добавляются веса первого и второго участков. Подобным же образом поступают и для других участков.
Деформации при действии собственного веса.
При определении влияния собственного веса на деформацию при растяжении и сжатии стержней придется учесть, что относительное удлинение различных участков стержня будет переменным, как и напряжение . Для вычисления полного удлинения стержня постоянного сечения определим сначала удлинение бесконечно малого участка стержня длиной , находящегося на расстоянии от конца стержня (Рис.4).
Рис.4. Расчетная модель бруса с учетом собственного веса.
Абсолютное удлинение этого участка равно
Полное удлинение стержня равно:
Величина представляет собой полный вес стержня. Таким образом, для вычисления удлинения от действия груза и собственного веса можно воспользоваться прежней формулой:
подразумевая под S внешнюю силу и половину собственного веса стержня.
Что же касается деформаций стержней равного сопротивления, то, так как нормальные напряжения во всех сечениях одинаковы и равны допускаемым , относительное удлинение по всей длине стержня одинаково и равно
Абсолютное же удлинение при длине стержня l равно:
где обозначения соответствуют приведенным на рис.1.
Деформацию ступенчатых стержней следует определять по частям, выполняя подсчеты по отдельным призматическим участкам. При определении деформации каждого участка учитывается не только его собственный вес, но и вес тех участков, которые влияют на его деформацию, добавляясь к внешней силе. Полная деформация получится суммированием деформаций отдельных участков.
Дальше…
Источник
Растяжение (сжатие) – это такой вид нагружения стержня, при котором в его поперечном сечении возникает внутренняя продольная сила Ν, действующая вдоль центральной оси z.
Продольная сила Ν – это равнодействующая всех внутренних нормальных сил в сечении. Для вычисления продольной силы применяется метод сечений.
Продольная сила Ν численно равна алгебраической сумме проекций всех сил, действующих по одну сторону от рассматриваемого сечения, на продольную ось бруса.
Правило знаков для продольной силы Ν: при растяжении продольная сила положительна, при сжатии – отрицательна.
График изменения продольных сил по длине стержня называется эпюрой. Эпюра N строится методом сечений на характерных участках бруса. Строится эпюра для использования ее при расчете бруса на прочность. Она дает возможность найти наибольшие значения продольных сил и положение сечений, в которых они возникают.
При растяжении (сжатии) возникают только нормальные напряжения. Согласно гипотезе Я. Бернулли (или гипотеза плоских сечений) в поперечных сечениях, удаленных от места приложения нагрузок, нормальные напряжения распределяются по сечению практически равномерно, а сами сечения, перпендикулярные к оси стержня z, остаются плоскими в процессе нагружения.
Нормальные напряжения в сечении при растяжении (сжатии) вычисляются по формуле
где А – площадь поперечного сечения.
Правило знаков для σ совпадает с правилом знаков для N.
В наклонном сечении, нормаль к которому составляет угол α с осью стержня z,
При растяжении в продольном направлении стержень удлиняется, а его поперечные размеры уменьшаются, при сжатии, напротив, в продольном направлении стержень укорачивается, а его поперечные размеры увеличиваются; Δℓ — абсолютное удлинение или укорочение участка стержня длиной ℓ, Δb – абсолютная поперечная деформация.
Относительное удлинение или укорочение участка стержня длиной ℓ, называемое линейной деформацией, определяется следующим образом
ε=Δℓ/ℓ.
Экспериментально установлено, что в определенной области нагрузок при упругом поведении материала между нормальными напряжениями и линейными деформациями существует линейная зависимость (закон Гука для напряжений)
σ=εЕ,
где Е – модуль продольной упругости или модуль Юнга, это физическая const. Для каждого из материалов величина модуля упругости имеет свое значение:
сталь, Е = 2.105 МПа,
медь, Е = 1.105 МПа,
алюминий, Е = 0,7.105 МПа.
Значение модуля упругости устанавливается экспериментально.
Согласно закону Гука (данную запись называют законом Гука для деформаций)
Δℓ=Νℓ/ЕА
Произведение ЕА – называется жесткостью стержня при растяжении – сжатии.
Перемещение произвольного сечения ступенчатого стержня
w=∑Δℓi
Относительная поперечная деформация:
ε′=Δb/b
где b – поперечный размер стержня.
Эксперименты также показывают, что в упругой стадии деформирования между продольной и поперечной деформациями существует взаимосвязь
μ =│ε′⁄ε│ — const,
где μ — коэффициент Пуассона, берется по модулю ,поскольку у продольной и поперечной деформации разные знаки (при растяжении продольные волокна увеличиваются, а поперечные уменьшаются в размере).
Для твердых материалов имеет значения коэффициент Пуассона
0≤μ ≤0,5
Изменение температуры стержня вызывает его удлинение (при нагревании) или укорочение (при охлаждении)
где — a- коэффициент линейного температурного расширения; Δtº=(tºк-tºн) — изменение температуры между значениями начальным (tºн) и конечным (tºк).
Статически неопределимыми называют системы, имеющие лишние связи – внешние или внутренние.
Для определения внутренних усилий в таких системах недостаточно рассматривать только уравнения равновесия.
В этом случае требуются дополнительные уравнения, число которых равно количеству лишних связей. Дополнительные уравнения составляются на основе анализа картины деформирования системы и использования законов деформирования ее элементов.
Алгоритм решения подобных задач включает следующее:
1) Статическая часть. Составляются уравнения равновесия с включением неизвестных усилий, действующих по направлению лишних связей.
2) Геометрическая часть. Составляются уравнения, описывающие взаимосвязь перемещений характерных точек, удлинений и укорочений отдельных стержней между собой.
3) Физическая связь. Записываются законы деформирования отдельных стержней системы.
Порядок расчета статически неопределимых брусьев
- Задаться направлениями возможных опорных реакций и составить уравнение статики для всей системы в целом.
- Определить степень статической неопределимости и использовать метод сечений с целью выразить неизвестные усилия через неизвестные опорные реакции. При этом неизвестные продольные силы (N) следует предполагать положительными и поэтому направлять «от сечения».
- Сформулировать условие совместности деформаций участков бруса.
- В процессе превращения условия совместности в уравнение совместности деформаций различий в характере деформаций участков не учитывать.
Порядок расчета статически неопределимых шарнирно-стержневых систем
- Задаться направлениями опорных реакций, но уравнений равновесия для всей системы не составлять, а сразу использовать метод сечений и составить уравнения статики для выделенной части системы.
- Определить степень статической неопределимости как разницу между количеством всех неизвестных, оказавшихся в уравнениях статики, и числом самих этих уравнений.
- Рассмотреть (изобразить) любую возможную картину деформаций системы и из ее анализа сформулировать условия совместности деформаций стержней системы (столько, какова степень статической неопределимости).
- В процессе преобразования условий совместности в уравнения совместности деформаций обязательно учитывать различие в характере деформаций стержней (т.е. вводить удлинение со знаком «плюс», а укорочение со знаком «минус») в соответствии с той картиной деформации, которую мы рассматриваем.
Источник
Напряжение в призматическом брусе
Собственный вес при расчетах на растяжение-сжатие учитывается для конструкций, вес которых сопоставима со значениями внешних нагрузок. Это могут быть железобетонные колонны, кирпичные простенки и др.
Рассмотрим внутренние усилия и напряжения, возникающие в растянутом стержне при одновременном действии сосредоточенной силы $F$ и собственного веса. Вес стержня определяется как
$Q = gamma cdot V = gamma cdot A cdot l$,
где $gamma $ – удельный вес материала [кН/м3], $V$, $A$, $l$ – об’объем, площадь сечения и длина стержня соответственно. Удельный вес эт’связана с плотностью материала $gamma = g cdot rho $, где $g approx 10$ м/с2, $rho $– плотность.
Продольная сила, возникающая в сечении И – И
$N = F + gamma cdot A cdot x$
Напряжение при учете собственного веса
$sigma = frac{N}{A} = frac{F}{A} + gamma cdot x$
Наибольшее напряжение возникает в верхнем сечении и условие прочности примет вид
${sigma _{max }} = frac{F}{A} + gamma cdot l leqslant left[ sigma right]$
Подбор площади сечения с учетом собственного веса
${A_{min }} = frac{F}{{left[ sigma right] — gamma cdot l}}$
Брус равного сопротивления
Брусом равного сопротивления называется брус, в котором напряжения по длине не меняются и, как правило, равны допустимым напряжением.
Вполне понятно, чтобы удовлетворить таким условиям, площадь сечения бруса должна меняться в соответствии с изменением продольной силы. Рассмотрим бесконечно малый элемент бруса (рис.) длиной $dx$. Нижний сечение этого элемента имеет площадь $A$. Продольная сила в нем равна $[sigma ] cdot A$. Продольная сила в верхнем сечении увеличивается на величину веса элемента, то есть на $dN = gamma cdot dV = gamma cdot A cdot dx$. Соответственно площадь увеличивается на величину $dA = frac{{dN}}{{[sigma ]}}$.
Таким образом,
$dN = gamma cdot A cdot dx = dA cdot [sigma ]$,
$frac{{dA}}{A} = frac{gamma }{{left[ sigma right]}} cdot dx$, [int {frac{{dA}}{A}} = int {frac{gamma }{{left[ sigma right]}} cdot dx} ], $ln left( A right) = frac{gamma }{{left[ sigma right]}} cdot x + C$.
В нижнем сечении, где продольная сила $N = F$, площадь сечения должна быть
${A_0} = frac{F}{{[sigma ]}}$.
Тогда
$ln left( {{A_0}} right) = frac{gamma }{{left[ sigma right]}} cdot 0 + C,,,, Rightarrow ,,,,,C = ln left( {{A_0}} right)$,
$ln left( A right) — ln left( {{A_0}} right) = frac{gamma }{{left[ sigma right]}} cdot x$,
$frac{A}{{{A_0}}} = {e^{frac{gamma }{{left[ sigma right]}} cdot x}}$.
то Есть, для обеспечения одинаковых напряжений по длине стержня, площадь сечения должна изменяться по экспоненциальной зависимостью
$A(x) = {A_0} cdot e{,^{frac{gamma }{{left[ sigma right]}} cdot x}}$.
Ступенчатый брус
Брус равного сопротивления неудобен для изготовления, поэтому для выравнивания напряжений используют ступенчатое изменение сечения по длине. При этом количество и длину ступеней определяют в зависимости от ситуации, а необходимую площадь сечения каждой ступени назначают из условия прочности как для призматического бруса. Например, для трехступенчатого бруса с нагрузкой на его конце расчет площадей сечения проводится, как показано на рис.6.3.
Деформации от собственного веса
Напряжение при учете только собственного веса для призматического бруса
$sigma = frac{{gamma cdot A cdot x}}{A} = gamma cdot x$.
По закону Гука
[varepsilon = frac{sigma }{E} = frac{{gamma x}}{E}]
[Delta l = intlimits_0^l {dDelta l} = intlimits_0^l {frac{gamma }{E} cdot dx} = frac{gamma }{E} cdot left. {frac{{{x^2}}}{2}} right|_0^l = frac{gamma }{E} cdot frac{{{l^2}}}{2} = frac{{Q cdot l}}{{2 cdot EA}}].
Если на стержень, кроме собственного веса $Q$ действует сила $F$, удлинение будет определяться по формуле
$Delta l = frac{{N,l}}{{EA}} + frac{{Q,l}}{{2,EA}}$.
Деформации бруса равного сопротивления определяются проще, потому что напряжение во всех сечениях одинаковы $sigma = left[ sigma right] = const$, тогда по закону Гука
$varepsilon = frac{{left[ sigma right]}}{E} = const$,
$Delta l = varepsilon cdot l = frac{{left[ sigma right]}}{E} cdot l$
Источник
Первая тема сопротивления материалов — это растяжение-сжатие. Задачи на растяжение сжатие в сопромате — довольно простая тема. И сейчас я это докажу.
Прежде всего растяжение — мы интуитивно понимаем — удлинение, увеличение размеров. А сжатие — уменьшение длины, укорочение.
При изучении растяжения-сжатия используется один и тот же подход ко всем задачам, ко всем расчетным схемам. А именно — метод сечений. О нем мы расскажем в отдельной записи. А пока, ниже вы видите видео уроки на эту тему. Надеюсь вам будет полезно и удобно изучать эту тему со мной.
Что такое растяжение-сжатие
Прежде всего нужно сказать, что растяжение-сжатие — это такой вид деформации (относительного изменения размеров), при котором одно плоское сечение относительно другого удаляется параллельно исходному положению.
Все это звучит сложно, но посмотрите видео и Вы все поймете!
Подход в решении задач на растяжение-сжатие
Видео урок — Как отличить растяжение от сжатия. Приводится объяснение основного метода расчета задач по сопротивлению материалов — метод сечений
В первом видео уроке объясняется сам процес возникновения деформации растяжения-сжатия. Как отличить растяжение от сжатия. Приводится объяснение основного метода расчета задач по сопротивлению материалов — метод сечений.
Здесь рассмотрены задачи для стержня, имеющего сплошное поперечное сечение. На такой стержень может действовать как одна сила, так и несколько.
Растяжение-сжатие в стержневых конструкциях
видео урок Растяжение-сжатие в стержневых конструкциях
Во втором видео уроке приводится решение задачи на растяжение-сжатие для системы стержневых конструкций. Приведены методика и план решения задачи по сопротивлению материалов на тему растяжение-сжатие.
Учет собственного веса в задачах сопротивления материалов на растяжение-сжатие
видео урок — Учет собственного веса в задачах сопротивления материалов на растяжение-сжатие
Третья задача на растяжение-сжатие стержней с учетом собственного веса. Приведен пример решения задачи и доступно рассказывается как можно учесть собственный вес конструкции при расчете на растяжение-сжатие.
Растяжение-сжатие с учетом собственного веса в стержнях с двумя участками
Задача на растяжение сжатие, более сложный случай. В этой задаче стержень состоит из нескольких участков. Здесь необходимо учитывать собственный вес — для стержня, испытывающего деформацию растяжения или сжатия, который состоит из нескольких участков. Здесь же приводится методика построения эпюр внутренних усилий при этих видах деформации.
Удлинение стержня при деформации растяжения-сжатия
видео урок — Удлинение стержня при деформации растяжения-сжатия
Приведен пример расчета на растяжение-сжатие когда нужно определить удлинение стержня. Удлинение (при растяжении) или укорочение (при сжатии) — это изменение размеров стержня вдоль оси приложения продольной нагрузки. Об этом в пятом видео уроке.
Определение удлинения стержня с учетом собственного веса при растяжении-сжатии
Определение изменения длины стержня с учетом собственного веса. Особенности формулы для определения удлинения (изменения длины) при растяжении-сжатии с учетом собственного веса.
Итак на этой странице приведены видеоуроки на основные темы в растяжении-сжатии. Планируется запись еще темы в которой будут рассматриваться статически неопределимые задачи на растяжение-сжатие.
Конечно это не все задачи, которые может понадобиться решить реальному инженеру, как инженеру-механику, так и инженеру-строителю. Встречаются разные случаи, когда нужно применять сообразительность.
Метод сечений в задачах на растяжение сжатие
Однако подход в решении всех задач на растяжение-сжатие всегда одинаков и состоит из следующих шагов:
- рассекаем наш стержень (а именно так называют элемент конструкции, который испытывает деформацию растяжения-сжатия)
- рассматриваем равновесие одной из частей стержня рассматривая внешние, приложенные к стержню усилия и внутреннее усилие, которое формируется силами межатомного взаимодействия
- внутреннее усилие направляем от сечения рассматриваемой части стержня к оставшейся части стержня (для статически определимых систем) или используя интуицию и опыт направляем так, чтобы направление внутреннего усилия совпало с направлением действия деформации (на растяжение или на сжатие)
- из суммы проекций на соответствующую ось или, если это возможно, суммы моментов относительно точки находим нужное внутреннее усилие.
В статически неопределимой задаче нужно к указанным действиям добавить еще одно уравнение которое называется деформационным.
Растяжение-сжатие в сопротивлении материалов одна из наиболее простых тем, разнообразие задач, правда, довольно широко. Но именно растяжение-сжатие в сопротивлении материалов учит тому, как нужно правильно и везде одинаково, несмотря на разнообразие расчетных схем, применять один и тот же подход к решению — метод сечений. В классическом курсе сопротивления материалов это первая тема — растяжение-сжатие.
список видео уроков по сопромату в котором темы раскрываются одна за другой. рекомендую для изучения сопромата
Ну а если возникнут сложности, если Вы предпочитаете заниматься индивидуально — обратитесь ко мне — помогу!
skype: zabolotnyiAN,
e-mail: zabolotnyiAN@gmail.com
Остались вопросы?
Все вопросы, которые у Вас могут возникнуть — рассмотрены в рубрике Условия и цена онлайн обучения сопромат и строймех. Для связи со мной используйте страницу «Контакты» или всплывающий внизу справа значок мессенджера.
Рубрики
Задачи по сопротивлению материалов с решениями, примеры, Растяжение — сжатие, Сопромат онлайн
Метки
внутренние усилия, задачи курса сопротивление материалов, классический курс сопротивления материалов в решениях задач, краткий курс сопротивления материалов, курс сопромата для чайников, Построение эпюр продольных сил, растяжение сжатие сопромат, растяжение сжатие сопротивление материалов, сопромат для чайников, Сопромат Примеры решения задач на растяжение-сжатие, сопромат репетитор, Сопромат это легко, Сопротивление материалов, сопротивление материалов краткий курс, сопротивление материалов примеры решения задач, эпюры растяжения сжатия
Источник