Разрывная сила при растяжении это

14Ноя

  • By: Семантика

  • Без рубрики

  • Comment: 0

Содержание статьи

  1. Предел прочности
  2. Как производится испытание на прочность
  3. Виды ПП
  4. Предел прочности на растяжение стали
  5. Предел текучести и временное сопротивление
  6. Усталость стали
  7. Предел пропорциональности
  8. Как определяют свойства металлов
  9. Механические свойства
  10. Классы прочности и их обозначения
  11. Формула удельной прочности
  12. Использование свойств металлов
  13. Пути увеличения прочностных характеристик

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе прочности материала при разрыве и натяжении, расскажем, что это такое и как работать с этим показанием.

Предел прочности

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не использует при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Как производится испытание на прочность

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробнее посмотрим на видео:

Виды ПП

Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:

  • сжатию – на образец действуют механические силы давления;
  • изгибу – деталь сгибают в различные стороны;
  • кручению – проверяется пригодность для использования в качестве крутящегося вала;
  • растяжению – подробный пример проверки мы привели выше.

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • Какие способы термообработки применялись – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

Предел текучести и временное сопротивление

Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных материалов и обозначает, как долго может деформироваться образец без увеличения на него внешней нагрузки.

Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение металла.

Усталость стали

Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом оба значения должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образец.

Значение каждого материала находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма стала прежняя – пример, сжатие пружины), то такие параметры нельзя называть пропорциональными.

Как определяют свойства металлов

Проверяют не только то, что называют пределом прочности, но и остальные характеристики стали, например, твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 характеристик:

  • Предел прочности стали при растяжении и на разрыв это – временное сопротивление внешним силам, напряжение, возникающее внутри.
  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под воздействием цикличных нагрузок.

Классы прочности и их обозначения

Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:

КлассВременное сопротивление, Н/мм2
265430
295430
315450
325450
345490
355490
375510
390510
440590

Видим, что для некоторых классов остается одинаковыми показатели ПП, это объясняется тем, что при равных значениях у них может различаться текучесть или относительное удлинение. В зависимости от этого возможна различная максимальная толщина металлопроката.

Формула удельной прочности

R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d. То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни. Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.

Формула выглядит так:

Ry = R/d

Здесь будет логичным объяснить, в чем измеряется удельный предел прочности. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.

Использование свойств металлов

Два важных показателя – пластичность и ПП – взаимосвязаны. Материалы с большим первым параметром намного медленнее разрушаются. Они хорошо меняют свою форму, подвергаются различным видам металлообработке, в том числе объемной штамповке – поэтому из листов делают элементы кузова автомобиля. При малой пластичности сплавы называют хрупкими. Они могут быть очень твердыми, но при этом плохо тянуться, изгибаться и деформироваться, например, титан.

Сопротивление

Есть два типа:

  • Нормативное – прописано для каждого типа стали в ГОСТах.
  • Расчетное – получается после вычислений в конкретном проекте.

Первый вариант скорее теоретический, для практических задач используется второй.

Пути увеличения прочностных характеристик

Есть несколько способов это сделать, два основных:

  • добавка примесей;
  • термообработка, например, закал.

Иногда они используются вместе.

Общие сведения о сталях

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Также посмотрим более подробное видео:

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Углерод

Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.

Марганец

Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.

Кремний

Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.

Азот и кислород

Если они попадают в сплав, но ухудшают его характеристики, при изготовлении от них пытаются избавиться.

Легирующие добавки

Также можно встретить следующие примеси:

  • Хром – увеличивает твёрдость.
  • Молибден – защищает от ржавчины.
  • Ванадий – для упругости.
  • Никель – хорошо влияет на прокаливаемость, но может привести к хрупкости.

Эти и другие химические вещества должны применяться в строгих пропорциях в соответствии с формулами. В статье мы рассказали про предел прочности (кратковременное сопротивление) – что это, и как с ним работать. Также дали несколько таблиц, которым можно пользоваться при работе. В качестве завершения, давайте посмотрим видеоролик:

Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.

Источник

    разрывная сила

    розривна сила

    Словарь металлургической терминов.
    2015.

    Смотреть что такое «разрывная сила» в других словарях:

    • разрывная нагрузка, отнесенная к ширине — кН/м Максимальная сила, зафиксированная при испытании пробы определенной ширины, отнесенная к ширине материала. [ГОСТ Р 53225 2008] Тематики материалы геотекстильные EN tensile stress at yield point FR contrainte traction au seuil d ècoulement …   Справочник технического переводчика

    • разрывная нагрузка — 3.1 разрывная нагрузка: Максимальное усилие, выдерживаемое штапельным волокном или элементарной нитью жгута при испытании на растяжение до разрыва. Источник: ГОСТ 10213.2 2002: Волокно штапельное и жгут химические. Методы определения разрывной… …   Словарь-справочник терминов нормативно-технической документации

    • Разрывная нагрузка —    наибольшее усилие, испытываемое волокном, пряжей или пробным образцом текстильного полотна к моменту разрыва; одна из характеристик механических свойств материала при растяжении до полного разрушения. Единица измерения ньютон (Н), сантиньютон… …   Энциклопедия моды и одежды

    • КРЕПОСТЬ ТРОСА РАЗРЫВНАЯ — натяжение или сила, которая, будучи приложена к тросу, производит его разрыв. См. также Трос пеньковый и Трос проволочный. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 …   Морской словарь

    • РАЗОРВАТЬ — РАЗОРВАТЬ, ву, вёшь; ал, ала, ало; орванный; совер. 1. кого (что). Резким движением, рывком разделить на части, нарушить цельность чего н. Р. письмо. Р. цепи рабства (перен.). Р. на части кого н. (также перен.: обременить делами, поручениями, а… …   Толковый словарь Ожегова

    • ГОСТ Р 53226-2008: Полотна нетканые. Методы определения прочности — Терминология ГОСТ Р 53226 2008: Полотна нетканые. Методы определения прочности оригинал документа: 3.2 абсолютное удлинение, см; мм: Увеличение длины элементарной пробы во время испытания. Определения термина из разных документов: абсолютное… …   Словарь-справочник терминов нормативно-технической документации

    • ГОСТ Р 53636-2009: Целлюлоза, бумага, картон. Термины и определения — Терминология ГОСТ Р 53636 2009: Целлюлоза, бумага, картон. Термины и определения оригинал документа: 3.4.49 абсолютно сухая масса: Масса бумаги, картона или целлюлозы после высушивания при температуре (105 ± 2) °С до постоянной массы в условиях,… …   Словарь-справочник терминов нормативно-технической документации

    • 1: — Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… …   Словарь-справочник терминов нормативно-технической документации

    • СТ ЦКБА 011-2004: Арматура трубопроводная. Термины и определения — Терминология СТ ЦКБА 011 2004: Арматура трубопроводная. Термины и определения: 2.29 авария Разрушение сооружений и/или технических устройств, применяемых на опасном производственном объекте, неконтролируемые взрывы и/или выбросы опасных веществ.… …   Словарь-справочник терминов нормативно-технической документации

    • определение — 2.7 определение: Процесс выполнения серии операций, регламентированных в документе на метод испытаний, в результате выполнения которых получают единичное значение. Источник …   Словарь-справочник терминов нормативно-технической документации

    • Хевисайд Оливер — (Heaviside) (1850 1925), английский физик. Труды по электродинамике (независимо от Г. Герца записал уравнения Максвелла в современном виде). Создал теорию передачи сигналов на дальние расстояния. Указал на существование ионизированного слоя… …   Энциклопедический словарь

    Источник

    Под прочностью бетона понимают его способность сопротивляться воздействию внешних сил, не разрушаясь.

    Прочность бетона зависит от многочисленных факторов: структуры, марки и вида цемента, водоцементного отношения, вида и прочности крупных и мелких заполнителей, вида напряженного состояния, формы и размеров образца, длительности загружения.

    На прочность бетона большое влияние оказывает скорость загружения образцов. При замедленном их нагружении, прочность бетона оказывается на 10…15% меньше, чем при кратковременном статическом. При быстром загружении прочность бетона возрастает до 20 %.

    Бетон имеет различную прочность при разных силовых воздействиях: сжатии, растяжении, изгибе, срезе. В связи с этим различают несколько характеристик прочности бетона: кубиковую и призменную прочность, прочность при растяжении, срезе и скалывании; прочность при многократных повторных нагрузках, прочность при кратковременном, длительном и динамическом действии нагрузок.

    Кубиковая прочность

    В железобетонных конструкциях бетон преимущественно используется для восприятия сжимающих напряжений. Поэтому за основную характеристику прочностных свойств бетона принята его прочность на осевое сжатие, устанавливаемая, как правило, путем испытания стандартных кубов размером 150×150×150 мм, испытанных при температуре (20 ± 2) °С через 28 дней твердения в нормальных условиях (температуре воздуха 15…20 °С и относительной влажности 90… 100%). Реже испытания проводят па цилиндрах диаметром (d) 100, 150, 200 и 300 мм с высотой h = 2d.

    За кубиковую прочность бетона принимают временное сопротивление R эталонных кубов, определяемое по выражению:

    где F – разрушающая нагрузка, Н;

    А – средняя рабочая площадь образца, мм2;

    α – переводный коэффициент, зависящий от размеров образца. С уменьшением размеров поперечного сечения коэффициент а уменьшается. Это объясняется изменением эффекта обоймы с изменением размеров образца и расстояния между его торцами.

    Различное сопротивление сжатию образцов разной величины (и формы) объясняется влиянием сил трения, возникающих между гранями образца и опорными плитами пресса.

    Вблизи опорных плит пресса силы трения, направленные внутрь, создают как бы обойму и тем самым увеличивают прочность образцов при сжатии. По мере удаления от торцов влияние сил трения уменьшается. Поэтому бетонный куб получает форму двух усеченных пирамид (рис.2, а). При отсутствии (или существенном уменьшении) сил трения характер разрушения меняется, происходит раскалывание куба по плоскостям, параллельным направлению действующей внешней нагрузки (рис.2, б).

    Силы трения

    Рис. 2. Характер разрушения бетонных кубов; а — при наличии трения по опорным плоскостям; б — при отсутствии трения по опорным плоскостям

    Реальные железобетонные конструкции по своей форме значительно отличаются от кубов. Поэтому кубиковая прочность не может непосредственно характеризовать прочность сжатых участков железобетонных конструкций. Для этой цели используют другую характеристику — призменную прочность бетона.

    Призменная прочность

    Железобетонные конструкции по форме отличаются от кубов, поэтому кубиковая прочность бетона не может быть непосредственно использована в расчетах прочности элементов конструкции. Основной характеристикой прочности бетона сжатых элементов является призменная прочность. Под призменной прочностью σbu понимают временное сопротивление осевому сжатию призмы с отношением высоты призмы h к размеру а квадратного основания, равным 4.

    В реальных конструкциях напряженное состояние бетона сжатой зоны приближается к напряженному состоянию призм. Образцы призматической формы, для которых влияние сил трения меньше, чем для кубов, при одинаковом поперечном сечении показывают меньшую прочность на сжатие. При отношении высоты призмы к стороне основания h /a > 4 влияние сил трения практически исчезает, и прочность становится постоянной и равной ≈ 0,75 R.

    Прочность на осевое растяжение

    Прочность бетона на осевое растяжение зависит от прочности при растяжении цементного камня и его сцепления с зернами крупного заполнителя.

    Рис.3. Схемы испытаний образцов для определения прочности бетона на растяжение

    Опытным путем она определяется испытаниями на разрыв образцов в виде восьмерок, на раскалывание образцов в виде цилиндров, кубов или на изгиб бетонных балочек.

    Прочность бетона на осевое растяжение имеет сравнительно небольшое значение.

    σbtu =0,1σbu …0,05 σbu

    Ориентировочное значение σbt можно определить по эмпирической формуле Фере:

    где γ = 0,8 – коэффициент для бетонов класса В25 и ниже, γ = 0,7 – для бетонов класса В30 и ниже

    Прочность бетона при срезе и скалывании

    Под чистым срезом понимают разделение элемента на части по сечению, к которому приложены перерезывающие силы.

    Под чистым скалыванием понимают взаимное смещение (сдвиг) частей элемента между собой под действием скалывающих (сдвигающих) усилий.

    Железобетонные конструкции редко работают на чистый срез и скалывание. Обычно срез сопровождается действием продольных сил, а скалывание — действием поперечных сил.

    Сопротивление срезу может возникать в шпоночных соединениях и у опор балок, а сопротивление скалыванию – при изгибе преднапряженных балок до появления в них наклонных трещин, если не обеспечена надежная связь между верхней и нижней частями бетона на опорах.

    В нормах временное сопротивление срезу и скалыванию не приводится, и его принимают приблизительно равным 2σbtu

    Прочность бетона при длительном действии нагрузки

    Пределом длительного сопротивления бетона называют наибольшие статические неизменные во времени напряжения, которые он может выдерживать неограниченно долгое время без разрушения.

    При длительном действии нагрузки бетонный образец разрушается при напряжениях, меньших, чем при кратковременной нагрузке. Это обусловлено влиянием развивающихся неупругих деформаций изменением структуры бетона.

    При расчете прочности элементов в расчетное сопротивление бетона сжатиюRbи растяжениюRbt вводят коэффициент условия работы γb2 , учитывающий влияние на прочность бетона вероятной длительности действии я расчетных усилий и условий возрастания прочности бетона во времени.

    Прочность бетона при многократном действии нагрузки

    Под прочностью бетона при многократно повторных (подвижных или пульсирующих) нагрузках σf (предел выносливости бетона) понимают напряжение, при котором количество циклов нагрузки и разгрузки, необходимых для разрушения образца, составляет не менее 1 000 000.

    Предел выносливости бетона связан с нижней границей образования микротрещин. Если многократно повторная нагрузка вызывает в бетоне напряжения, превышающие границы трещинообразования, то при большом количестве циклов наступает его разрушение.

    Предел выносливости бетона σf определяют посредством умножения временных сопротивлений σbu иσbtu бетона на коэффициент условий работы бетона γb1.

    Удаление и снос бетона

    — Как удалить старый бетон

    Следующее предназначено только для общего информационного использования. Это очень общий обзор процесса выдачи разрешений для проектов по сносу. Фактический процесс может широко варьироваться между регионами страны, округами и муниципалитетами.

    Вы также найдете обзор распространенных методов и инструментов сноса. Сравните ваши варианты того, как снести существующий бетон, а также какое оборудование использовать. Кроме того, вы сможете найти информацию о безопасности и предупреждения о возможных опасностях во время сноса.

    Бетон Информация о сносе

    УСЛОВИЯ ВЫЗОВА БЕТОНА ДЛЯ СНЯТИЯ И ЗАМЕНЫ

    Существуют определенные условия, при которых использование исправляющего состава и продукта для шлифовки приведет к кратковременному исправлению. В этих условиях исправление бетона перед повторной шлифовкой или нанесение декоративного покрытия будет пустой тратой времени и денег, поскольку поверхность или покрытие вскоре будут иметь те же характеристики, что и бетон, который вы пытались починить.

    Эти условия включают в себя:

    • Глубокие, широко распространенные трещины , где произошло заселение. Это может быть связано с весом больших грузовиков, неправильной подготовкой подкласса, эрозией подкласса или по другим причинам.
    • Бетонные плиты, которые утонули , что может произойти, если подкласс не был подготовлен должным образом. Свободная грязь, возможно, использовалась для подкласса. Когда эта грязь оседает — иногда из-за разбрызгивателя или дождевой воды, идущей под бетоном — бетон не поддерживается и будет более подвержен погружению.Также возможно, что подкласс был уплотнен, а бетон подвергся чрезмерному весу, что привело к падению бетона.
    • Бетонные плиты с явными признаками морозного пучения . Морозные пучки очень распространены в холодном климате. Влага в земле замерзает и бетон поднимается вверх.
    • Бетонные плиты, которые имеют так много отколов или точечной коррозии на поверхности, что выгоднее заменить бетон, чем подготовить всю поверхность к повторной шлифовке и шлифовке бетона.

    При любом из вышеперечисленных условий лучше снять и заменить бетон.

    Найдите местных подрядчиков по бетону, которые могут вырвать ваш старый бетон и заменить его новым красивым декоративным бетоном.

    Существует множество других причин, по которым необходимо удалять бетон в проекте:

    • Пристройка к коммерческому или жилому зданию требует удаления бетона, который мешает пристройке.
    • Удаляется вся конструкция, из которой бетон является частью конструкции.
    • Существует неисправная бетонная конструкция, которую владелец хочет вырвать и заменить.
    • Старый бордюр должен быть удален для улучшения улиц, расширения дорог и т. Д.

    БЕТОННЫЕ МЕТОДЫ РАЗРУШЕНИЯ

    Разрывное давление

    Разрыв под давлением может использоваться в тех случаях, когда предпочтительным является относительно тихий, беспыльный контролируемый снос.

    Как механическое, так и химическое разрушение под давлением расщепляют бетон либо с помощью расщепляющей машины, работающей на гидравлическом давлении, обеспечиваемом двигателем в случае механического разрушения, либо путем введения расширяющейся суспензии в заранее определенный рисунок скважин в случае химического взрыва.

    Затем расщепленный бетон легко удаляется вручную или краном.

    Гидравлическое и химическое разрывное давление разрушает бетонные конструкции с минимальным уровнем шума и летящих обломков. Оба метода работают путем приложения боковых сил к внутренним отверстиям, просверленным в бетоне, и могут выполнять практически любую работу, на которую способны другие методы разрушения. Однако, вместо того, чтобы разрушить мошенник

    .Определено

    сил — KN, KGF, DAN и разрывная нагрузка

    Что означают килоньютон [кН] и деканьютон [даН]?

    Ньютон (символ: N) является производной единицей силы Международной системы единиц (СИ). Он назван в честь Исаака Ньютона в знак признания его работ по классической механике, в частности по второму закону движения Ньютона. Он равен величине силы, необходимой для ускорения массы одного килограмма со скоростью один метр в секунду в секунду.

    На поверхности Земли масса в 1 кг прилагает силу приблизительно 9,8 Н [вниз] (или 1,0 кгс силы; 1 кгс = 9,80665 Н по определению). Приближение в 1 кг, соответствующее 10 Н, иногда используется, как правило, в повседневной жизни и в технике. Обычно можно увидеть силы, выраженные в килоньютонах или кН, где 1 кН = 1000 Н.

    1 килоньютон [кН] = 100 деканьютон [даН] = 1000 ньютон [н]

    1 Деканьютон [даН] = 10 ньютонов [N]

    1 Килограмм-сила [кгс] = 9.80665 N

    Забавное эмпирическое правило, помогающее запомнить Ньютон: на земле ньютон [N] эквивалентен ~ 100 г; по совпадению речь идет о массе яблока. Таким образом, вы можете думать о ньютоне [N] как о том, что его бьют по голове яблоком.

    килоньютонов часто используются для определения безопасных значений крепежа, анкеров и многого другого в строительной промышленности. Они также часто используются в технических характеристиках оборудования для парапланеризма, парамоторизма, дельтапланеризма и скалолазания (например,грамм. карабины и мейлоны). Безопасные рабочие нагрузки при измерениях напряжения и сдвига могут быть указаны в кН (килоньютонах).

    1 кН равняется 101,97162 килограммам нагрузки, но умножение значения кН на 100 (т. Е. Использование слегка пессимистичного и более легкого для вычисления значения) является хорошим эмпирическим правилом.

    Примеры…

    • «Прочность: 18 кН» = 1800 даН = около 1800 кг
    • «Разрушающее напряжение 1800 даН» = 18 кН = около 1800 кг
    • «Разрушающее напряжение 2000 даН» = 20 кН = около 2000 кг
    • «Разрушающая нагрузка 2500 кг» = около 25 кН = 2500 даН
    • «Разрушающее напряжение> 2500 даН» = 25 кН = около 2500 кг
    • «Гарантированная нагрузка 26 кН» = 2600 даН = около 2600 кг
    • «Разрушающая нагрузка 32 кН» = 3200 даН = около 3200 кг
    • «Прочность на разрыв 40 кН» = 4000 даН = около 4000 кг

    Для получения дополнительной информации см. Ньютон (единица) — Википедия, бесплатная энциклопедия

    Предел рабочей нагрузки (WLL) и минимальная разрывная нагрузка (MBL)

    Предел рабочей нагрузки (WLL), также известный как Безопасная рабочая нагрузка (SWL) или Нормальная рабочая нагрузка (NWL), — это максимальная рабочая нагрузка, разработанная производителем.Это сила, которую часть подъемного оборудования, подъемного устройства или аксессуара может безопасно использовать для подъема, подвешивания или опускания массы, не опасаясь ее поломки.

    WLL представляет собой силу, намного меньшую, чем та, которая требуется для отказа или подъема подъемного оборудования, что обычно называется минимальной разрывной нагрузкой (MBL) или минимальной прочностью на разрыв (MBS).

    WLL обычно отмечается на оборудовании производителем и рассчитывается путем деления MBL на коэффициент безопасности (SF) i.е. WLL = MBL / SF.

    SF часто равен 5 (5: 1, 5 до 1 или 1/5), хотя могут использоваться и другие значения, такие как 4, 6 и 10. Для парапланеризма, дельтапланеризма и парамоторного оборудования обычно используется SF 5, для пример.

    Например, майон, имеющий MBL 2250 кг, будет иметь WLL 450 кг, если используется SF 5.

    Другими словами, у майлона, у которого есть WLL 450 кг, будет MBL 2250 кг, если используется SF 5.

    Источник

    Читайте также:  Что делать когда растяжение кисти руки