Растяжение сжатие металла при изгибе
В инженерной практике часто имеют место случаи одновременного действия на стержень поперечных и продольных нагрузок, причем последние могут быть приложены внецентренно. Такой случай показан на рис. 11.26. При этом внутренние усилия в заделке равны:
Рис. 11.26
Рис. 11.27
В общем случае растяжения или сжатия с изгибом внутренние усилия определяются раздельно от действия всех составляющих нагрузок. Нормальные напряжения в поперечных сечениях определяются по общей формуле
Приравняв это выражение нулю, получим уравнение нулевой линии
Положив в этом уравнении последовательно у = 0 и z = О, получим формулы для определения отрезков, отсекаемых нулевой линией на осях координат:
Как и во всех рассмотренных выше случаях сложного сопротивления, наибольшие растягивающие и сжимающие напряжения действуют в точках сечения, наиболее удаленных от нулевой линии. Для сечений типа прямоугольника и двутавра это противоположные угловые точки сечения. Значения наибольших и наименьших напряжений в угловых точках можно определить по формулам:
где величины изгибающих моментов Mz и Му надо взять по абсолютной величине.
Напомним, что во всех предыдущих решениях использовался принцип независимости действия сил, позволяющий определять внутренние усилия для недеформированного состояния стержня. Строго говоря, это возможно только при малых деформациях. В противном случае принцип независимости действия сил использовать нельзя.
Рассмотрим, например, консольный стержень в условиях сжатия с изгибом (рис. 11.27). Если стержень обладает значительной гибкостью и прогибы от поперечной нагрузки достаточно велики, то сила Р вызывает дополнительный изгиб, а изгибающий момент в заделке от ее действия равен М = PvB. Для негибких стержней этот момент незначителен и его можно не учитывать. Для гибких стержней необходимо проводить расчет по так называемой деформированной схеме с учетом влияния продольных сил на изгиб. Подобные задачи будут рассмотрены в гл. 13.
Пример 11.7. Для короткого консольного деревянного стержня круглого сечения, находящегося в условиях центрального сжатия и изгиба в плоскости Oxz (рис. 11.28), построим эпюру о в опасном сечении.
Рис. 11.28
Определяем геометрические характеристики сечения:
Строим эпюры внутренних усилий N и Му (рис. 11.28, а). Изгибающий момент Му вызывает растяжение волокон левой половины стержня и имеет наибольшее значение в заделке: Му = — 4 • 1,2 • 0,6 = —2,88 кНм. Изгибающий момент Mz равен нулю. Определяем значения наибольших нормальных напряжений в точках А и В в сечении вблизи заделки:
Напряжения во всех точках сечения стержня являются сжимающими. Эпюры о в опасном сечении от действия N и М и суммарная эпюра с приведены на рис. 11.28, б.
Пример 11.8. Для стального стержня, состоящего из двух неравнобоких уголков L 160x100x10, находящегося в условиях центрального растяжения и изгиба в плоскости Оху (рис. 11.29, а), определим расчетное значение силы Р из условия прочности и построим эпюру о в опасном сечении. Совместная работа уголков обеспечена соединениями, показанными пунктиром. В расчетах примем R= 210 МПа = 21 кН/см2, ус = 0,9.
Рис. 11.29
Определяем геометрические характеристики сечения:
Строим эпюры N w Mz (рис. 11.29, а). Опасным является сечение в середине стержня, где Mz имеет наибольшее значение. В нижних волокнах стержня нормальные напряжения от действия N и Mz имеют одинаковый знак и являются растягивающими. Из условия прочности по наибольшим растягивающим напряжениям в точке А
находим Р 29,4 кН. При действии силы Р = 29,4 кН напряжения в точках А и В равны:
Эпюры о в опасном сечении от действия N w Mzw суммарная эпюра а приведены на рис. 11.29, б.
Пример 11.9. Для стального консольного стержня составного сечения, находящегося в условиях внецентренного растяжения и изгиба (рис. 11.30, а), выполним проверку прочности и построим эпюру а в опасном сечении. В расчетах примем /? = 210 МПа, ус — 0,9.
Построим эпюры N, Mz, Му. Изгибающий момент Mz вызывает растяжение верхних волокон стержня и в заделке равен Mz = —10 • 3,6 — 15 • 1,8 = —63 кНм, а момент М вызывает растяжение волокон левой части сечения (при взгляде от положительного направления оси Ох) и имеет постоянное значение Му = —300 • 0,0625 = —18,75 кНм. Продольная сила является растягивающей и также имеет постоянное значение N = 300 кН.
Наибольшие нормальные напряжения действуют в сечении вблизи заделки (опасное сечение).
Рис. 11.30
Определяем геометрические характеристики сечения. Учитывая, что для двутавра 124 Fx = 34,8 см2, J = 3460 см4, Jy = = 198 см4, b = 11,5 см, И = 24 см, находим:
Наибольшие напряжения действуют в противоположных угловых точках опасного сечения. Определяем по формулам (11.17) отрезки, отсекаемые нулевой линией на осях координат. Учитывая, что в первой четверти сечения моменты Mz и Му вызывают сжатие и имеют отрицательный знак, находим:
Отложив у0 и Zq на осях координат, проводим нулевую линию. На прямой, перпендикулярной нулевой линии, строим эпюру о (рис. 11.30, б), которая является разнозначной. Наибольшие растягивающие напряжения возникают в точке Л . Напряжения в точках Л и В равны:
Поскольку оА = 123,7 МПа ycR = 189 МПа, прочность стержня обеспечена. Эпюра с в опасном сечении приведена на рис. 11.30, б.
Источник
Внутренние усилия при растяжении-сжатии.
Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).
Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)
Напряжения при растяжении-сжатии.
Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:
где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.
Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.
Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:
Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.
Деформации при растяжении-сжатии.
Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l
Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:
При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:
где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).
Таблица 1
Модуль продольной упругости для различных материалов
Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:
Соответственно, относительную поперечную деформацию определяют по формуле:
При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:
Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).
Таблица 2
Коэффициент Пуассона.
Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:
Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:
Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).
Механические свойства материалов.
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость – свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Расчеты на прочность и жесткость при растяжении и сжатии.
Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:
где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.
Расчеты на прочность при растяжении и сжатии.
Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.
Условие прочности стержня при его растяжении (сжатии):
При проектном расчете определяется площадь опасного сечения стержня:
При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:
Расчет на жесткость при растяжении и сжатии.
Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:
Часто дополнительно делают расчет на жесткость отдельных участков стержня.
Следующая важная статья теории:
Изгиб балки
Источник
Растяжение
Испытание на растяжение позволяет получить достаточно полную информацию о механических свойствах материала. Для этого применяют специальные образцы, имеющие в поперечном сечении форму круга (цилиндрические образцы) или прямоугольника (плоские образцы). На рис. 3.1 представлена схема цилиндрического образца на различных стадиях растяжения. Согласно ГОСТ 1497—84 геометрические параметры образцов на растяжение должны отвечать следующим соотношениям: /() = 2,82У7ф или /0 = = 5,65V^b, или /0 = 1 l,3VTb (гДе — начальная расчетная длина образца, Fq — начальная площадь поперечного сечения расчетной части образца). Для цилиндрических образцов отношение расчетной начальной длины /0 к начальному диаметру г/0, т.е. /0/б/0, называют кратностью образца, от которой зависит его конечное относительное удлинение. На практике применяют образцы с кратностью 2,5,5 и 10. Самым распространенным является образец с кратностью 5.
Рис. 3.1. Схемы цилиндрического образца на различных стадиях растяжения:
а — образец до испытания (/о и d$ — начальные расчетные длина и диаметр); б — образец, растянутый до максимальной нагрузки (/р и d? — расчетные длина и диаметр образца в области равномерной деформации); в — образец после разрыва (/к — конечная расчетная длина; dK — минимальный диаметр в месте разрыва)
Перед испытанием образец закрепляют в вертикальном положении в захватах испытательной машины. На рис. 3.2 представлена принципиальная схема типичной испытательной машины, основными элементами которой являются приводной нагружающий механизм, обеспечивающий плавное нагружение образца вплоть до его разрыва; силоизмерительное устройство для измерения силы сопротивления образца растяжению; механизм для автоматической записи диаграммы растяжения.
В процессе испытания диаграммный механизм непрерывно регистрирует так называемую первичную (машинную) диаграмму растяжения в координатах «нагрузка (Р) — абсолютное удлинение образца (А/)» (рис. 3.3). На диаграмме растяжения пластичных металлических материалов можно выделить три характерных участка: участок ОА — прямолинейный, соответствующий упругой деформации; участок ЛВ — криволинейный, соответствующий упругопластической деформации при возрастании нагрузки; участок ВС — также криволинейный, соответствующий упругопластической деформации при снижении нагрузки. В точке С происходит окончательное разрушение образца с разделением его на две части.
В области упругой деформации (участок О А) зависимость между нагрузкой Р и абсолютным упругим удлинением образца А/ пропорциональна и известна под названием закона Гука:
где к = EF{)/1() — коэффициент, зависящий от геометрии образца (площади поперечного сечения Е0 и длины /0) и свойств материала (параметр Е).
Рис. 3.2. Схема испытательной машины:
1 — собственно машина; 2 — винт грузовой; 3 — нижний захват (активный); 4 — образец; 5 — верхний захват (пассивный); 6 — силоизмерительный датчик; 7 — пульт управления с электроприводной аппаратурой; 8 — индикатор нагрузок; 9 — рукоятки управления; 10 — диаграммный механизм; 11 — кабель
Рис. 3.3. Схемы машинных (первичных) диаграмм растяжения пластичных материалов:
а — с площадкой текучести; 6 — без площадки текучести
Параметр Е (МПа) называют модулем нормальной упругости, характеризующим жесткость материала, которая связана с силами межатомного взаимодействия. Чем выше Еу тем материал жестче и тем меньшую упругую деформацию вызывает одна и та же нагрузка. Закон Гука чаще представляют в следующем виде:
где а = P/F$ — нормальное напряжение; 8 = Д///0 — относительная упругая деформация.
Наряду с модулем нормальной упругости Е существует модуль сдвига (модуль касательной упругости) G, который связывает пропорциональной зависимостью касательное напряжение т с углом сдвига (относительным сдвигом) у:
Еще одним важным параметром упругих свойств материалов является коэффициент Пуассона р, равный отношению относительной поперечной деформации (Ad/d^) к относительной продольной деформации (А///0). Этот коэффициент характеризует стремление материала сохранять в процессе упругой деформации свой первоначальный объем.
От коэффициента Пуассона р зависит соотношение между Е и G:
Как следует из уравнения (3.1), Е больше G, так как для смещения атомов отрывом требуется большее усилие, чем для смещения сдвигом.
Значения модуля нормальной упругости Е, модуля сдвига G и коэффициента Пуассона р для некоторых материалов приведены в табл. 3.1.
При переходе от упругой деформации к упругопластической для некоторых металлических материалов на машинной диаграмме
Таблица 3.1
Значения модуля нормальной упругости Еу модуля сдвига G и коэффициента Пуассона р для некоторых материалов
Материал | Е, МПа | G, МПа | ц |
Сталь | 210 000 | 82 031 | 0,28 |
Медь листовая | 113 000 | 42 164 | 0,34 |
Латунь | 97 000 | 34 155 | 0,42 |
Цинк | 82 000 | 32 283 | 0,27 |
Алюминий | 68 000 | 25 564 | 0,33 |
Свинец | 17 000 | 5862 | 0,45 |
растяжения может проявляться небольшой горизонтальный участок, который называют площадкой текучести (АЛ‘ на рис. 3.3, а). На этой стадии деформации в действие включаются новые источники дислокаций, происходят их спонтанное размножение и лавинообразное распространение по плоскостям скольжения. Макроскопическим проявлением этих процессов является образование на рабочей поверхности образца узких полос скольжения, получивших название линий Чернова — Людерса. Эти линии располагаются под углом приблизительно 45° к продольной оси образца по направлению действия максимальных касательных напряжений и отчетливо видны на его полированной поверхности. Однако многие металлы и сплавы деформируются при растяжении без площадки текучести.
С увеличением упругопластической деформации усилие, с которым сопротивляется образец, растет и достигает в точке В своего максимального значения. Для пластичных материалов в этот момент в наиболее слабом сечении образца образуется локальное сужение (шейка), где при дальнейшем деформировании происходит разрыв образца. На участке ОЛВ деформация распределена равномерно по всей длине образца, а на участке ВС деформация практически вся сосредоточена в зоне шейки.
При растяжении определяют следующие показатели прочности и пластичности материалов.
Показатели прочности материалов характеризуются удельной величиной — напряжением, равным отношением нагрузки в характерных точках диаграммы растяжения к площади поперечного сечения образца. Дадим определение наиболее часто используемым показателям прочности материалов.
Предел текучести (физический) (ат, МПа) — это наименьшее напряжение, при котором материал деформируется (течет) без заметного изменения нагрузки:
где Р1 — нагрузка, соответствующая площадке текучести на диаграмме растяжения (см. рис. 3.3, а).
Если па машинной диаграмме растяжения нет площадки текучести (см. рис. 3.3, б)у то задаются допуском на остаточную деформацию образца и определяют условный предел текучести.
Условный предел текучести (a0i2, МПа) — это напряжение, при котором остаточное удлинение достигает 0,2% от начальной расчетной длины образца[1]:
где Р0 2 — нагрузка, соответствующая остаточному удлинению A/q 2 = 0,002/0.
Временное сопротивление (предел прочности) (ав, МПа) — это напряжение, соответствующее наибольшей нагрузке Ршах, предшествующей разрыву образца:
Истинное сопротивление разрыву (5К, МПа) — это напряжение, определяемое отношением нагрузки Рк в момент разрыва к площади поперечного сечения образца в месте разрыва Рк:
где
Показатели пластичности. Пластичность — одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Дадим определение наиболее часто используемым показателям пластич11ости матерналов.
Относительное предельное равномерное удлинение (8р, %) — это наибольшее удлинение, до которого образец деформируется равномерно по всей его расчетной длине, или, другими словами, это отношение абсолютного приращения расчетной длины образца AL до нагрузки Ртах к ее первоначальной длине /о (см. рис. 3.3, а):
Аналогично предельному равномерному удлинению существует относительное предельное равномерное сужение (|/р, %):
где Рр= ndp/4 — площадь поперечного сечения образца, соответствующая Ртах.
Из условия постоянства объема образца при растяжении можно получить связь между ц/р и 5р в относительных значениях (безразмерном виде):
При разрушении образца на две части определяют конечные показатели пластичности: относительное удлинение и относительное сужение образца после разрыва.
Относительное удлинение после разрыва (8, %) — это отношение приращения расчетной длины образца после разрыва А/к к ее первоначальной длине:
Относительное удлинение после разрыва зависит от соотношения /0 и (/0, г.е. от кратности образцов. Чем меньше отношение Iq/Fq и кратность образца, тем больше 8. Это объясняется влиянием шейки образца, где имеет место сосредоточенное удлинение. Поэтому индекс у 8 указывает на кратность образца1, например 85, 810.
Относительное сужение после разрыва (|/, %) — это отношение уменьшения площади поперечного сечения образца в месте разрыва AFK к начальной площади поперечного сечения:
В отличие от конечного относительного удлинения конечное относительное сужение не зависит от соотношения Iq и Fq (кратности образца), так как в последнем случае деформацию оценивают в одном, наиболее узком, сечении образца.
Диаграммы условных и истинных напряжений и деформаций. Протяженность первичных диаграмм растяжения вдоль осей координат Р и А/ зависит от абсолютных размеров образцов. При постоянной кратности образца чем больше его длина и площадь поперечного сечения, тем выше и протяженнее первичная диаграмма растяжения. Однако если эту диаграмму представить в относительных координатах, то диаграммы для образцов одной кратности, но разных размеров будут одинаковы. Так, если по оси ординат откладывать условные напряжения а, равные отношению нагрузки Р к начальной площади поперечного сечения Fq, а по оси абсцисс — условные удлинения 8, равные отношению абсолютного приращения длины образца А/ к его начальной длине /0, то диаграмму называют диаграммой условных напряжений и деформаций (или просто условной диаграммой). На рис. 3.4, а схематически представлена условная диаграмма «а — 8». На этой диаграмме отмечены условный предел текучести сто,2> временное сопротивление ств, конечное условное напряжение ак, условное предельное равномерное удлинение 8р и условное относительное удлинение после разрыва 8К.
Однако более объективную информацию можно получить, если диаграмму растяжения представить в других координатах: «S — г». Истинное напряжение S определяется как отношение текущей на- [2]
Рис. 3.4. Схемы условной (а) и истинной (6) диаграмм растяжения пластичных материалов
грузки Р к текущей площади поперечного сечения F, которое непрерывно уменьшается в процессе растяжения:
Истинное удлинение г учитывает непрерывно изменяющуюся длину образца в процессе его растяжения, и поэтому его можно определить как сумму бесконечно малых относительных деформаций (II/I при переменном /:
Диаграмму в координатах «S — е» называют диаграммой истинных напряжений и деформаций (или просто истинной диаграммой). На истинной диаграмме, как и на условной, можно найти характерные точки, соответствующие истинному пределу текучести[3]5о,2> истинному временному сопротивлению 5В, истинному сопротивлению разрыву 5К, а также истинному предельному равномерному удлинению ?р и истинному конечному удлинению гк (рис. 3.4, б).
Значения предела текучести ат (а02), временного сопротивления а„, предельного равномерного удлинения 8р, истинного сопротивления разрыву 5К, относительных удлинения 85 и сужения у после разрыва для некоторых марок стали представлены в табл. 3.2.
Источник