Растяжение и сжатие квадратичной функции

Растяжение и сжатие квадратичной функции thumbnail

Анна Малкова

В этой статье мы расскажем об основных преобразованиях графиков функций. Что нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали. Как задать растяжение графика по горизонтали или вертикали. Как отразить график относительно оси Х или Y.

Очень жаль, что эта тема — полезная и очень интересная — выпадает из школьной программы. На нее не постоянно хватает времени. Из-за этого многим старшеклассникам не даются задачи с параметрами — которые на самом деле похожи на конструктор, где вы собираете решение из знакомых элементов. Хотя бы для того, чтобы решать задачи с параметрами, стоит научиться строить графики функций.

Но конечно, не только для того, чтобы сдать ЕГЭ. Первая лекция на первом курсе технического или экономического вуза посвящена функциям и графикам. Первые зачеты в курсе матанализа связаны с функциями и графиками.

Начнем со сдвигов графиков по Х и по Y.

Сдвиг по горизонтали.

Пусть функция задана формулой и Тогда график функции сдвинут относительно исходной на а вправо. График функции сдвинут относительно исходной на а влево.

Растяжение и сжатие квадратичной функции

1. Сдвиг по вертикали.

Пусть функция задана формулой и С — некоторое положительное число. Тогда график функции сдвинут относительно исходного на С вверх. График функции сдвинут относительно исходного на С вниз.

Растяжение и сжатие квадратичной функции

Теперь растяжение графика. Или сжатие.

2.  Растяжение (сжатие) по горизонтали.

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в k раз по горизонтали, если , и сжат относительно исходного в k раз по горизонтали, если

Растяжение и сжатие квадратичной функции

3.  Растяжение (сжатие) по вертикали

Пусть функция задана формулой и Тогда график функции растянут относительно исходного в М раз по вертикали, если , и сжат относительно исходного в М раз по вертикали, если

Растяжение и сжатие квадратичной функции

И отражение по горизонтали.

4. Отражение по горизонтали

График функции симметричен графику функции относительно оси Y.

Растяжение и сжатие квадратичной функции

Растяжение и сжатие квадратичной функции

5. Отражение по вертикали.

График функции симметричен графику функции относительно оси Х.

Растяжение и сжатие квадратичной функции

Друзья, не возникло ли у вас ощущения, что вы все это где-то видели? Да, наверняка видели, если когда-либо редактировали изображения в графическом редакторе на компьютере. Изображение можно сдвинуть (по горизонтали или вертикали). Растянуть (по горизонтали или вертикали). Отразить. И все это мы делаем с графиками функций.

И еще два интересных преобразования. Здесь в формулах присутствует знак модуля. Если не помните, что такое модуль, — срочно повторите эту тему.

6. Графики функций и

На рисунке изображен график функции Она специально взята такая — несимметричная относительно нуля.

Растяжение и сжатие квадратичной функции

Построим график функции

Конечно же, мы пользуемся определением модуля.

Это мы и видим на графике. Для неотрицательных значений х график остался таким же, как был. А вместо каждого отрицательного х мы взяли противоположное ему положительное число. И поэтому вся та часть графика функции, что лежала слева от оси Х, заменилась на зеркально отраженную правую часть графика.

Растяжение и сжатие квадратичной функции

Теперь график функции Вы уже догадались, что будет. Вся часть графика, лежащая ниже оси Х, зеркально отражается в верхнюю полуплоскость. А верхняя часть графика, лежащая выше оси Х, остается на месте.

Растяжение и сжатие квадратичной функции

Как определить по формуле функции, будет график преобразован по горизонтали (по Х) или по вертикали (по Y)? Разница очевидна. Если сначала мы что-либо делаем с аргументом х (прибавляем к нему какое-либо число, умножаем на какое-либо число или берем модуль) — преобразование по Х. Если сначала мы нашли функцию, а затем уже к значению функции что-то прибавили, или на какое-нибудь число умножили, или взяли модуль, — преобразование по Y.

Вот самые простые задачи на преобразование графиков.

1. Построим график функции 

Это квадратичная парабола, сдвинутая на 3 влево по x и на 1 вниз по y.

Вершина в точке

Растяжение и сжатие квадратичной функции

2. Построим график функции

Выделим полный квадрат в формуле.

График — квадратичная парабола, сдвинутая на 2 вправо по x и на 5 вниз по y.

Обратите внимание: график функции пересекает ось y в точке На нашем графике это точка

Растяжение и сжатие квадратичной функции

Продолжение — в статье «Построение графиков функций».

Источник

Функция вида y=ax^2+bx+c , где aneq 0 называется квадратичной функцией. 

График квадратичной функции – парабола

Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА 

y=x^2, то есть a=1, b=0, c=0

Для построения заполняем таблицу, подставляя значения x в формулу:

Отмечаем  точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х ( в данном случае шаг 1 ), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:

Читайте также:  Мази при растяжении связок кисти руки

Нетрудно заметить, что если мы возьмем случай a=-1, b=0, c=0, то есть y=-x^2, то мы получим параболу, симметричную y=x^2 относительно оси (ох). Убедиться  в этом несложно, заполнив аналогичную таблицу:

II СЛУЧАЙ,  «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать a=2, a=-3, a=0.5? Как изменится поведение параболы? При |a|>1 парабола  y=ax^2 изменит форму, она “похудеет” по сравнению с параболой y=x^2 (не верите – заполните соответствующую таблицу – и убедитесь сами):

На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы y=x^2 (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях x  ордината  y  каждой точки умножилась на 4.  Это произойдет со всеми ключевыми точками исходной  таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при |a|<1 парабола y=ax^2  «станет шире»  параболы y=x^2:

Давайте подитожим:

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ  «С»

 Теперь давайте введем в игру c (то есть рассматриваем случай, когда cneq 0), будем рассматривать параболы вида y=ax^2+c. Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы y=ax^2 вдоль оси (oy) вверх или вниз в зависимости от знака c:


IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси (oy) и будет, наконец, “гулять” по всей координатной плоскости? Когда b перестанет быть равным 0.

Здесь для построения параболы y=ax^2+bx+c нам понадобится формула для вычисления вершины: x_o=frac{-b}{2a},   y_o=y(x_o).

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу y=ax^2, что уже нам по силам. Если  имеем дело со случаем a=1, то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с a=2, например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы y=x^2-4x-2:

x_o=frac{4}{2}=2,  y_o=(2)^2-4cdot 2 -2=-6. Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы y=x^2,  ведь a=1 в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку (0;c).  Действительно, подставив в формулу y=ax^2+bx+c x=0, получим, что y=c. То есть ордината точки пересечения параболы  с осью (оу), это c.   В нашем примере (выше), парабола пересекает ось ординат в точке -2, так как c=-2.

2) осью симметрии параболы является прямая x=frac{-b}{2a}, поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая y к 0, мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение ax^2+bx+c=0. В зависимости от дискриминанта, будем получать одну (D=0,  x=-frac{b}{2a}), две (D>0, x_{1,2}=frac{-bpmsqrt{b^2-4ac}}{2a}) или нИсколько (D<0) точек пересечения с осью (ох). В предыдущем примере у нас  корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения  с осью (ох) у нас будут (так как D>0), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана  в виде y=ax^2+bx+c

1) определяем направление ветвей ( а>0 – вверх, a<0 – вниз)

2) находим координаты вершины (x_o;y_o) параболы по формуле x_o=frac{-b}{2a},   y_o=y(x_o).

3) находим точку пересечения параболы с осью (оу) по свободному члену c, строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение c велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу y=ax^2. Если |a|>1, то парабола y=ax^2 становится у’же по сравнению с y=x^2, если |a|<1, то парабола расширяется по сравнению с y=x^2

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение ax^2+bx+c=0

Пример 1

Пример  2

Замечание 1. Если же парабола изначально нам задана в виде y=a(x-m)^2+n, где m, n – некоторые числа (например, y=(x-5)^2-1), то построить ее будет еще легче, потому что нам уже заданы координаты вершины (m, n). Почему?

Возьмем квадратный трехчлен ax^2+bx+c и выделим в нем полный квадрат: ax^2+bx+c=a(x^2+frac{b}{a}x+frac{c}{a})=a((x^2+2frac{b}{2a}x+frac{b^2}{4a^2})-frac{b^2}{4a^2}+frac{c}{a})=a(x+frac{b}{2a})^2+frac{b^2}{4a}+c. Посмотрите, вот мы и получили, что m=frac{-b}{2a}, n=frac{b^2}{4a}+c=y(frac{-b}{2a}). Мы с вами ранее называли   вершину параболы (x_o; y_o), то есть теперь x_o=m, y_o=n.

Читайте также:  Потенциальная энергия растяжения сжатия

Например,  y=-frac{1}{3}{(x+2)}^2+6. Отмечаем на плоскости вершину параболы (-2; 6), понимаем, что ветви направлены вниз, парабола расширена (относительно y=x^2). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому y=x(x-4) (то есть y представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае  – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Источник

(сжатия) графика функции от оси с коэффициентом и последующим преобразованием симметрии относительно оси задачи 1 и 2).

На рисунке 53, а изображены графики функций

На рисунке 53, б изображены графики функций

111. Графики функции …

Графиком функции является парабола, Чтобы построить график функции нужно осуществить растяжение (сжатие) параболы от оси с коэффициентом при этом если то график функции нужно еще подвергнуть преобразованию симметрии относительно оси х (см. п. 110).

На рисуике 54, а изображены графики функции для с, равного Все эти графики называют параболами. При 0 ветви параболы, служащей графиком функции направлены вверх, а при вниз.

Аналогично, зная график функция можно построить график функции вида . На рисунке 54, б изображены эти графики для случаев с, равного 1; —1; 3.

112. Построение графика функции …

Пусть известен график функции а построить нужно график функции

Положим . Тогда формулу или, что то же самое, можно переписать в виде . Таким образом, график функции — построенный в координатной плоскости совпадает с графиком функции , построенным в координатной плоскости

Формулы или, что то же самое, надают параллельный перенос, при котором любая точка переходит в точку и, в частности, начало координат переходит в точку .

Чтобы построить график функции нужно:

1) выполнить параллельный перенос плоскости, выбрав началом новой системы координат точку

2) в плоскости построить график фушщии

(см. п. 113), Для ее построения на практике используются три способа.

Первый способ — отыскание координат вершины параболы по формулам.

Пример 1. Построить график функции Решение. Здесь . Значит, Итак, (1; —1) — вершина параболы. Для построения графика надо знать координаты еще нескольких точек:

Отметив вершину параболы, полученные точки и точки, симметричные им относительно оси параболы, строим требуемый график (рис. 59, а). Заметим, что запоминать формулы координат вершины параболы не следует. Достаточно воспользоваться тем, что если абсцисса вершины параболы, то в этой точке (см. п. 217). На уравнения находим абсцисса вершины параболы.

Второй способ — построение параболы по точкам с ординатой, равной свободному члену квадратного трехчлена .

Пример 2. Построить график функции .

Решение, Найдем точки графика, имеющие ординату, равную свободному члену квадратного трехчлена, т. е. равную пяти. Для этого решим уравнение Имеем:

Итак, мы нашли две точки графика и . Отметим их на координатной плоскости (рис. 59, б). Мы знаем, что графиком является парабола. Точки А и В лежат на этой параболе и имеют одинаковую ординату. Значит, точки симметричны относительно оси симметрии параболы, а потому ось симметрии параболы проходит перпендикулярно отрезку АВ через его середину. Так как абсцисса точки А равна нулю, а абсцисса точки В равна четырем, то уравнение оси параболы: Подставив значение формулу получим Значит, вершина С параболы, т. е. единственная точка параболы, лежащая на ее оси симметрии, имеет координаты Отметив на координатной плоскости точку построим параболу, проходящую через три точки

А, В, С. Это и будет график функции (рис. 59, б). (Для более точного построения можно найти координаты еще нескольких точек и построить их.)

Третий способ — построение параболы по корням квадратного трехчлена.

Пусть корни квадратного трехчлена решении уравнения см. п. 137). Тогда парабола, служащая графиком функции пересекает ось абсцисс в точках , а ось симметрии параболы проходит перпендикулярно отрезку АВ через его середину. Зная абсциссу вершины С параболы (точка С лежит на оси симметрии параболы, поэтому , найдем по формуле ординату, а затем построим параболу по трем точкам А, В, С.

Пример 3. Построить график функции

Решение. Из уравнения находим Значит, мы знаем две точки искомой параболы: Уравнение оси симметрии параболы таково: Подставив значение 3 вместо в формулу находим Значит, вершиной параболы служит точка По трем точкам строим параболу — график функции ).

Читайте также:  Центральное растяжение прямого бруса

115. Построение графика функции y=f(kx).

Решим несколько задач.

Задача 1. Построить график функции где если задан график функции

полученного графика от оси с коэффициентом 3, а затем преобразование симметрии относительно оси . В результате мы получим график функции . На рисунке 64, а показана одна полуволна графика, а на рисунке 64, б — весь график.

117. График гармонического колебания.

Тригонометрические функции используются для описания колебательных процессов. Один из наиболее важных процессов такого рода описывается формулой

Эта формула называется формулой гармонических или синусоидальных колебаний. Величина А называется амплитудой колебания, она характеризует размах колебания. Величина называется частотой колебания. Чем больше , тем больше число колебаний за единицу времени (число колебаний за единицу времени равно Наконец, а называется начальной фазой колебания. 21

Если, например, груз, висящий на пружине, вывести из положения равновесия, то он начнет совершать вертикальные колебания. Закон движения выражается формулой (1), где у — отклонение груза от положения равновесия, время. Тот же закон встречается в теории переменного электрического тока. При вращении прямоугольной рамки, сделанной из проводящего электрический ток материала, в магнитном поле по ней идет переменный ток. Если рамка вращается равномерно, величина тока меняется по закону гармонических колебаний (1).

Построим график функции Прежде всего преобразуем функцию к виду Построение графика этой функции выполним в несколько этапов.

1) Осуществим параллельный перенос системы координат, поместив начало новой системы в точку .

2) В системе построим график функции этом можно ограничиться одной полуволной).

3) Осуществив сжатие построенного графика к оси у с коэффициентом 6), получим график

Осуществив растяжение последнего графика от оси с коэффициентом А, получим требуемый график.

Пример 1. Построить график функции

Решение. Имеем Построение графика выполним в несколько этапов.

1) Осуществим параллельный перенос системы координат, выбрав началом новой системы точку .

В системе нам нужно построить график функции

2) Строим график функции

3) Выполним сжатие графика к оси у с коэффициентом т. е. растяжение с коэффициентом 3), получим график функции

4) Осуществим растяжение последнего графика от оси с коэффициентом 2. Полученный график является графиком функции (рис. 65).

На практике вместо сжатия, растяжения и параллельного переноса часто поступают иначе: отыскивают значения при которых заданная функция обращается в нуль, и значения, при которых она принимает наибольшее наименьшее значения. Далее строят график по точкам.

Пример 2. Построить график гармонического колебания

Решение. Решим сначала уравнение

Имеем (см. п. 154) . Дадим

Источник

Ìàñøòàáèðîâàíèå — îïåðàöèÿ ñæàòèÿ èëè ðàñòÿæåíèÿ ãðàôèêà ôóíêöèè âäîëü îñåé àáñöèññ è îðäèíàò.

Òî, ÷òî òðåáóåòñÿ âûïîëíèòü ìàñøòàáèðîâàíèå, ïîêàçûâàþò êîýôôèöèåíòû k1 è k2 â óðàâíåíèè y = ± k1 fk2 (x + a))+b. Îíè äîëæíû áûòü íå ðàâíû åäèíèöå.

Êîãäà 0 < k1,2 <1, ñîâåðøàåì ñæàòèå ãðàôèêà îòíîñèòåëüíî y è ðàñòÿæåíèå îòíîñèòåëüíî x , êîãäà k1,2>1, âûïîëíÿåì ðàñòÿæåíèå âäîëü îñè îðäèíàò è ñæàòèå âäîëü îñè àáñöèññ.

Êîãäà ôóíêöèÿ ïðèíèìàåò âèä y = f (k2x) ,òî åñëè k2 >1 – ïðîèçâîäèì ñæàòèå ãðàôèêà ê îñè îðäèíàò (y) â k ðàç, à åñëè 0 < k2<1 — ðàñòÿæåíèå ãðàôèêà îò îñè îðäèíàò â 1/k.

Ìàñøòàáèðîâàíèå - ïðåîáðàçîâàíèå ãðàôèêà ôóíêöèè.

Êîãäà ôóíêöèÿ ïðèíèìàåò âèä y = k1 f (x) , òî åñëè k1 >1 — îñóùåñòâëÿåì ðàñòÿæåíèå ãðàôèêà îò îñè àáñöèññ (0x) â k ðàç, à åñëè 0 < k1<1 — ñæàòèå ãðàôèêà ê îñè àáñöèññ â 1/k.

Ãðàôèê ôóíêöèè. Ìàñøòàáèðîâàíèå - ïåðâûé ýòàï ïðåîáðàçîâàíèÿ ãðàôèêà ôóíêöèè.

  

Êàëüêóëÿòîðû ïî àëãåáðå

Ðåøåíèÿ, ïîäñêàçêè è ó÷åáíèê ëèíåéíîé àëãåáðû îíëàéí (âñå êàëüêóëÿòîðû ïî àëãåáðå).
Êàëüêóëÿòîðû ïî àëãåáðå
  

Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû

Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû: êîðíè, äðîáè, ñòåïåíè, óðàâíåíèÿ, ôèãóðû, ñèñòåìû ñ÷èñëåíèÿ è äðóãèå êàëüêóëÿòîðû.
Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû
  

Àëãåáðà 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó àëãåáðû äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Àëãåáðà 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Ãðàôèêè ýëåìåíòàðíûõ ôóíêöèé

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ìàòåìàòèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Ãðàôèêè ýëåìåíòàðíûõ ôóíêöèé
  

Ôóíêöèÿ. Ïîêàçàòåëüíàÿ ôóíêöèÿ.

Ïîêàçàòåëüíîé íàçûâàåòñÿ ôóíêöèÿ ó = à õ , â êîòîðîé à – ýòî ïîñòîÿííîå ïîëîæèòåëüíîå ÷èñëî.
Ôóíêöèÿ. Ïîêàçàòåëüíàÿ ôóíêöèÿ.
  

Ôóíêöèÿ. Ëèíåéíûå ôóíêöèè.

Åñëè ïåðåìåííûå õ, ó âûðàæàþòñÿ ïîñðåäñòâîì óðàâíåíèÿ Àõ + By = Ñ , ïðè ýòîì ÷èñëà À,  èëè ïî ìåíüøåé ìåðå îäíî èç íèõ, íå ðàâíî íóëþ, òî ãðàôèêîì ôóíêöèîíàëüíîé çàâèñèìîñòè ÿâëÿåòñÿ ïðÿìàÿ ëèíèÿ .
Ôóíêöèÿ. Ëèíåéíûå ôóíêöèè.

Источник