Растяжение и сжатие конструкций

Растяжение и сжатие конструкций thumbnail

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

При проектном расчете определяется площадь опасного сечения стержня:

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Сопротивление материалов

Растяжение и сжатие



Напряжения и характер деформаций при растяжении и сжатии

Растяжением или сжатием называется такой вид деформации, при котором в любом поперечном сечении бруса возникает только продольная сила.
Брусья с прямолинейной осью, работающие на растяжение или сжатие, часто называются стержнями.

Рассмотрим невесомый, защемленный левым концом прямой брус, вдоль оси которого действуют активные силы F и 2F (рис. 1).
Части бруса постоянного сечения, заключенные между поперечными плоскостями (сечениями), в которых приложены одинаковые внешние силы (нагрузки или реакции связей) будем называть участками. Т. е. участок — это однородный кусок бруса и по форме, и по нагрузкам, и по площади сечения.

напряжения при сжатии и растяжении

Изображенный на рис. 1 брус состоит из двух участков – от защемленного конца до места приложения силы F, и от силы F до свободного конца, к которому приложена сила 2F.
Применим метод сечений и определим продольные внутренние силы N1 и N2 на этих участках.
Сначала рассечем брус плоскостью 1-1 и мысленно отбросим правую часть бруса, заменив ее эквивалентными внутренними и внешними силами.
Применим уравнения равновесия для этой части бруса:

∑ Z = 0, следовательно: 2F – F – N1 = 0, откуда N1 = 2F – F = F.

Очевидно, что для сохранения равновесия части бруса достаточно приложить продольную силу. Нетрудно понять, что на втором участке бруса продольная сила в сечении 2-2 будет иметь другое значение: N2 = 2F.
Таким образом, продольная сила в поперечном сечении бруса равна алгебраической сумме внешних сил, расположенных по одну сторону от рассматриваемого сечения и в пределах каждого участка имеет одинаковое значение.
Последнее утверждение не совсем справедливо, поскольку в местах приложения внешних сил внутренние силы распределяются по сложным закономерностям, но с учетом рассмотренного ранее принципа смягчения граничных условий (принципа Сен-Венана), мы допускаем некоторую условную погрешность, незначительно влияющую на итоговый результат расчета.



При определении величины продольной силы алгебраическим сложением внешних сил следует обращать внимание на знаки (векторные значения) этих сил. При расчетах в сопромате обычно принимают растягивающие нагрузки (направленные от сечения) положительными, а сжимающие – отрицательными.

При изучении ряда деформаций мы будем мысленно представлять брусья состоящими из бесконечного количества волокон, расположенных параллельно оси бруса, и предполагать, что при деформации растяжения и сжатия эти волокна не надавливают друг на друга (гипотеза о не надавливании волокон).

Чтобы понять характер напряжений и деформаций, возникающих в сжимаемом или растягиваемом брусе, представим себе прямой брус из резины, на котором нанесена сетка из продольных и поперечных линий. Если такой брус подвергнуть деформации растяжения, можно заметить, что:

  • поперечные линии на брусе остаются ровными и перпендикулярными оси бруса, а расстояния между ними увеличатся;
  • продольные линии останутся прямыми, а расстояния между ними уменьшатся.

Из этого эксперимента следует, что при растяжении справедлива гипотеза плоских сечений (гипотеза Бернулли), и, следовательно, все волокна бруса удлинятся на одну и ту же величину. Все это позволяет сделать вывод, что при растяжении и сжатии в поперечных сечениях бруса возникают только нормальные напряжения, равномерно распределенные по сечению. Эти напряжения можно определить по формуле:

σ = N / А,

где N – продольная сила, А – площадь поперечного сечения бруса.

Очевидно, что при растяжении и сжатии форма сечения бруса на величину напряжений не влияет.
Для наглядного изображения распределения продольных сил и нормальных напряжений вдоль оси бруса строят графики, называемые эпюрами (от французского «epure» — чертеж, график) , при этом на эпюрах при построении учитывают знаки (векторные значения) продольных сил и напряжений.

построение эпюр сил и напряжений в брусе

Для ступенчатого бруса, к которому приложены сжимающая 2F и растягивающая 3F силы на рис. 2 показаны соответствующие эпюры продольных сил N и нормальных напряжений σ.

Порядок построения эпюр таков: сначала под чертежом бруса проводят прямую линию, параллельную оси бруса (эта линия условно представляет брус), затем напротив каждого сечения бруса откладывают по этой линии величину силовых факторов: для положительных – вверх, для отрицательных — вниз. Масштаб при этом выбирается произвольный. Разумеется, перед построением эпюры необходимо подсчитать величину силовых факторов (сил, моментов сил или напряжений) в каждом участке бруса.
На полученном графике в кружках указываются знаки силовых факторов по участкам, на наружных углах ступенчатых переходов ставятся числовые значения этих силовых факторов, а вся площадь графика заштриховывается тонкими линиями, перпендикулярными оси.
Слева от оси эпюры указывается, какой силовой фактор на ней представлен.

По эпюрам, представленным на рис. 2 можно заметить, что в местах приложения внешних нагрузок и реакций внутренние силовые факторы изменяются скачкообразно (принцип Сен-Венана).
Визуальное исследование эпюры позволяет определить критические участки бруса, находящиеся в наиболее напряженном состоянии. Так, по представленным на рис. 2 эпюрам напряжений, возникающих в брусе, можно определить, что критическим является 2-й участок, поскольку здесь возникает наибольшее напряжение (по эпюре видно, что это напряжение сжатия, т. к. оно имеет отрицательное значение).

Кроме того, эпюра любого силового фактора позволяет (без применения лишних расчетов) определить силу или момент, действующие на брус со стороны, например, заделки, поскольку после построения эпюры со стороны свободного конца бруса эти силовые факторы отобразятся графически, без вычислений.

Ниже размещен видеоролик, в котором подробно объясняется порядок построения эпюр продольных сил и напряжений, возникающих в брусе при растяжении и сжатии, а также выводы, которые можно сделать на основе визуального анализа графиков.
Видеоурок ведет преподаватель ГОУ СПО «Нижнетагильский горно-металлургический колледж» Чирков А. С.

***

Материалы раздела «Растяжение и сжатие»:

  • Деформации при растяжении и сжатии. Потенциальная энергия деформации растяжения.
  • Расчеты на прочность при растяжении и сжатии. Статически неопределимые задачи.
  • Закон Гука

Смятие



Правильные ответы на вопросы Теста № 4

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

1

1

2

1

3

2

2

1

3

1

Источник

В результате освоения данной главы студент должен:

знать

  • • принципы определения усилий и напряжений в поперечных сечениях стержней при растяжении (сжатии);
  • • основы расчета элементов конструкций на прочность и жесткость;
  • • способы испытания материалов и установления их нормативных и расчетных сопротивлений;

уметь

• определять усилия, напряжения и деформации в стержнях при растяжении (сжатии);

владеть

  • • навыками построения эпюр усилий, напряжений и деформаций в стержнях при растяжении (сжатии);
  • • навыками решения задач, основанных на условии прочности при растяжении (сжатии);
  • • навыками описания механических характеристик материалов.

Усилия при растяжении и сжатии

Состояние стержня, при котором в его поперечных сечениях имеются только нормальные к ним силы и в каждом сечении их равнодействующая направлена вдоль оси стержня, называется растяжением (сжатием) (см. рис. 4.1 и 4.2).

Растягивающие (направленные от сечения) продольные силы принято считать положительными, сжимающие (направленные к сечению) — отрицательными.

При действии нескольких видов нагрузок продольные силы, возникающие в поперечных сечениях стержня, меняются вдоль его продольной оси. Для наглядного представления характера изменения усилий по длине стержня строят их графики, называемые эпюрами усилий.

Приведем несколько примеров построения эпюр продольных сил.

Пример 5.1

Рассмотрим защемленный одним концом стержень, загруженный продольными силами (рис. 5.1, а) в точках В, С и D (начало координат — в точке А).

Решение. Стержень имеет три участка между точками приложения внешних продольных сил. Найдем закономерности изменения продольной силы на каждом из этих участков. Для этого используем метод сечений — проведем сечения 1—1,2—2 и 3—3 на каждом участке и рассмотрим равновесие одной из отсеченных частей стержня.

В стержнях с одним свободным от закреплений концов отсеченную часть удобнее брать со стороны этого конца. В этом случае нет необходимости определять опорную реакцию в защемлении.

Рис. 5.1

Неизвестные продольные силы в сечении предварительно будем направлять от сечения, т.е. считать положительными, пока не будет доказано обратное.

  • 1. Участок 1 (равновесие правой отсеченной части, рис. 5.1, б).
  • 0

Хх = 0; 25 — -V, = 0, ЛГ, = 25 кН.

  • 2. Участок 2 (равновесие правой отсеченной части, рис. 5.1, в).
  • 3,0

Хх= 0; 25 — 40 — ЛГ2 = 0,N2 = -15 кН.

  • 3. Участок 3 (равновесие правой отсеченной части, рис. 5.1, г).
  • 6

Хх = 0; 30 + 25 — 40 — Х3 = 0, N3 = 15 кН.

Из полученных решений видно, что в пределах каждого участка продольные силы остаются постоянными, т.е. не зависят от координаты *. При этом полученное значение продольной силы ^отрицательно. Это означает, что на втором участке — сжатие. По полученным значениям продольных сил на участках строим эпюру Лг(рис. 5.1, д)

Пример 5.2

Рассмотрим шарнирно опертый стержень, загруженный продольными силами (рис. 5.2, а) в точках В и С. Начало координат — в точке А

Решение. Стержень в общем случае имеет три опорные реакции (рис. 5.2, б). Так как стержень загружен только горизонтальными силами, вертикальные реакции VA и Ус равны нулю, что легко доказывается двумя уравнениями равновесия: 1МЛ = 0 и ZjMc=0.

Горизонтальная реакция в опоре А определяется из уравнения равновесия:

1. LX = 0; 160 — 80 + Нл = 0, НА = -80 кН.

Таким образом (рис. 5.2, в), стержень имеет два участка между точками приложения внешних продольных сил. Найдем закономерность и изменения продольной силы на каждом из этих участков. Для этого используем метод сечений — проведем сечения 1—1 и 2—2 на каждом участке и рассмотрим равновесие одной из отсеченных частей стержня, наиболее удобной.

Неизвестные продольные силы в сечении предварительно будем направлять от сечения, т.е. считать положительными, пока не будет доказано обратное.

  • 2. Участок 1 (равновесие левой отсеченной части, рис. 5.2, г).
  • 0

Хх = 0; JV, — 80 = 0, X, = 80 кП.

  • 3. Участок 2 (равновесие правой отсеченной части, рис. 5.2, Э).
  • 4,0

Хх = 0; — 80 — Щ = 0, N2 = -80 кН.

Из полученных решений видно, что в пределах каждого участка продольные силы остаются постоянными, т.е. не зависят от координаты *. При этом полученное значение продольной силы N2 отрицательно. Это означает, что на втором участке — сжатие. По полученным значениям продольных сил на участках строим эпюру Лг(рис. 5.2, е).

Из рассмотренных примеров можно сделать следующие выводы.

  • 1. В точках приложения внешних сосредоточенных сил эпюра продольных сил N изменяется скачкообразно, перепады в ординатах эпюры равны внешним приложенным силам в этих точках.
  • 2. Нет необходимости каждый раз изображать отсеченную часть стержня, как это было показано в приведенных выше примерах. В любом сечении продольная сила может быть определена из зависимости, вытекающей из уравнения равновесия для отсеченной части стержня:

Рис. 5.2

Продольная сила в поперечных сечениях стержня численно равна алгебраической сумме проекций всех сил, взятых по одну сторону от рассматриваемого сечения, на ось (или касательную к ней) стержня.

Рис. 53

В случае действия продольной распределенной нагрузки по оси стержня q(x) (рис. 5.3, а) продольная сила в произвольном сечении стержня может быть вычислена по формуле

В строительных конструкциях таким видом нагрузки является собственный вес вертикально расположенных элементов, вызывающий в них растяжение или сжатие.

Рассмотрим стержень постоянного сечения, закрепленный верхним концом и испытывающий действие только собственного веса. В этом случае продольная распределенная нагрузка но оси стержня будет постоянна и равна где у — плотность материала стержня; А — площадь поперечного сечения стержня.

На основании формулы (5.2) продольная сила в любом сечении такого стержня от действия собственного веса будет

и эпюра усилий будет иметь вид, показанный на рис. 5.3, 6.

Источник