Свойства функции y=sin(x) и ее график. 

График функции 15 (синусоида)

Растяжение и сжатие графиков синуса и косинуса

Свойства функции 15

  1.  Область определения: R (x — любое действительное число) т.е. Растяжение и сжатие графиков синуса и косинуса
  2. Область значений: 3
  3. Функция нечетная:Растяжение и сжатие графиков синуса и косинуса

    (график симметричен относительно начала координат).

  4. Функция периодическая с периодом file.[2]
  5. Точки пересечения с осями координат:  file.[3]
  6. Промежутки знакопостоянства: Растяжение и сжатие графиков синуса и косинуса
  7. Промежутки возрастания и убывания:   
    Растяжение и сжатие графиков синуса и косинуса
  8. file.[4]

Объяснение и обоснование

Описывая свойства функций, мы будем чаще всего выделять такие их характеристики: 1) область определения; 2) область значений; 3) четность или нечетность; 4) периодичность; 5) точки пересечения с осями координат; 6)   промежутки знакопостоянства; 7) промежутки возрастания и убывания; 8) наибольшее и наименьшее значения функции.

Замечание. Абсциссы точек пересечения графика функции с осью Ох (то есть те значения аргумента, при которых функция равна нулю) называют нулями функции.

Напомним, что значение синуса — это ордината соответствующей точки единичной окружности (рис. 1).

Растяжение и сжатие графиков синуса и косинуса Рис.1.

Поскольку ординату можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности всегда можно провести единственную прямую, перпендикулярную оси ординат), то область определения функции 15 — все действительные числа. Это можно записать так:Растяжение и сжатие графиков синуса и косинуса

Для точек единичной окружности ординаты находятся в промежутке [—1; 1] и принимают все значения от —1 до 1, поскольку через любую точку отрезка [—1; 1] оси ординат (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси орди­нат, и получить точку окружности, которая имеет рассматриваемую орди­нату. Таким образом, для функции 15область значений: Растяжение и сжатие графиков синуса и косинуса. Это можно записать так:Растяжение и сжатие графиков синуса и косинуса.Как видим, наибольшее значение функции sin x равно единице. Это зна­чение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть приРастяжение и сжатие графиков синуса и косинуса Наименьшее значение функции 15 равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окруж­ности является точка B, то есть при4.

Синус — нечетная функция: file_1, поэтому ее график симметричен относительно начала координат.

Синус — периодическая функция с наименьшим положительным периодом Растяжение и сжатие графиков синуса и косинуса: 5_1, таким образом, через промежутки длиной Растяжение и сжатие графиков синуса и косинуса вид графика функции 15 повторя­ется. Поэтому при построении графика этой функции достаточно построить график на любом промежутке длиной Растяжение и сжатие графиков синуса и косинуса, а потом полученную линию парал­лельно перенести вправо и влево вдоль оси Ox на расстояние Растяжение и сжатие графиков синуса и косинуса, где k — любое натуральное число.

Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси Растяжение и сжатие графиков синуса и косинуса значение Растяжение и сжатие графиков синуса и косинуса. Тогда соответствующее значение Растяжение и сжатие графиков синуса и косинуса, то есть график функции Растяжение и сжатие графиков синуса и косинуса проходит через начало координат.

На оси Растяжение и сжатие графиков синуса и косинуса значение 12. Поэтому необходимо найти такие значения Растяжение и сжатие графиков синуса и косинуса, при которых 15, то есть ордината соответствующей точки единичной окруж­ности, равна нулю. Это будет тогда и только тогда, когда на единичной окруж­ности будут выбраны точки C или D, то есть при 13 (см. рис. 1).

Промежутки знакопостоянства. Значения функции синус положительны (то есть ордината соответствующей точки единичной окружности положительна) в I и II четвертях (рис. 2). Таким образом, 16 при всех 17, а также, учитывая период, при всех 18.

Значения функции синус отрицательны (то есть ордината соответствую­щей точки единичной окружности отрицательна) в III и IV четвертях, поэто­му 19 при 20.

Промежутки возрастания и убывания. Учитывая периодичность функции 15 с периодом 21, достаточно исследовать ее на возрастание и убывание на любом промежутке длиной 6, например на промежутке 22

Если 23(рис. 3, а), то при увеличении аргумента 24 ордината соответствующей точки единичной окружности увеличивается (то есть 25, следовательно, на этом промежутке функция 15 возрас­тает. Учитывая периодичность функции 15, делаем вывод, что она также возрастает на каждом из промежутков 26

27

Рис.2                                                                            Рис.3

Если 28 (рис.3,б), то при увеличении аргумента 29 ордината соответствующей точки единичной окружности уменьшается (то есть 30), таким образом, на этом промежутке функция 15 убыва­ет. Учитывая периодичность функции 15, делаем вывод, что она также убывает на каждом из промежутков 31

Проведенное исследование позволяет обоснованно построить график функции 15. Учитывая периодичность этой функции (с периодом 6), достаточно сначала построить график на любом промежутке длиной 6, на­пример на промежутке 32. Для более точного построения точек графика воспользуемся тем, что значение синуса — это ордината соответствующей точки единичной окружности. На рисунке 4 показано построение графика функции 15 на промежутке 33. Учитывая нечетность функции 15 (ее график симметричен относительно начала координат), для построения графика на промежутке 34 отображаем полученную кривую симметрич­но относительно начала координат (рис. 5).

35

Рис.4

37

Рис.5

Поскольку мы построили график на промежутке длиной 6, то, учитывая периодичность синуса (с периодом 6), повторяем вид графика на каждом промежутке длиной 6 (то есть переносим параллельно график вдоль оси Растяжение и сжатие графиков синуса и косинуса на 36, где k — целое число). Получаем график, который называется синусоидой .(Рис.6)

38

Рис.6

Замечание. Тригонометрические функции широко применяются в ма­тематике, физике и технике. Например, множество процессов, таких как колебания струны, маятника, напряжения в цепи переменного тока и т. п., описываются функцией, которая задается формулой 39. Та­кие процессы называют гармоническими колебаниями.

График функции 39 можно получить из синусоиды 15 сжатием или растяжением ее вдоль координатных осей и параллельным пере­носом вдоль оси Растяжение и сжатие графиков синуса и косинуса. Чаще всего гармоническое колебание является функцией времени t. Тогда оно задается формулой 40, где А — амплитуда

колебания, 41— частота, 42 — начальная фаза, 43 — период колебания.

СВОЙСТВА ФУНКЦИИ Растяжение и сжатие графиков синуса и косинусаИ ЕЕ ГРАФИК

График функции Растяжение и сжатие графиков синуса и косинуса (косинусоида).

Растяжение и сжатие графиков синуса и косинуса

Свойства функции Растяжение и сжатие графиков синуса и косинуса

  1. Область определения: R (x — любое действительное число)11.
  2. Область значений: 3
  3. Функция четная: 4

    (график симметричен относительно оси 8).

  4. Функция периодическая с периодом 21 : 5
  5. Точки пересечения с осями координат 6
  6. Промежутки знакопостоянства: 7
  7. Промежутки возрастания и убывания: 
    8
  8. Растяжение и сжатие графиков синуса и косинуса

Объяснение и обоснование

Напомним, что значение косинуса — это абсцисса соответствующей точки единичной окружности (рис.7). Поскольку абсциссу можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности, всегда можно провести единственную прямую, перпендикулярную оси абсцисс), то область определения функции 1 — все действительные числа. Это можно записать так:
11.

10

Рис.7

Для точек единичной окружности абсциссы находятся в промежутке 12 и принимают все значения от -1 до 1, поскольку через любую точку отрезка 12оси абсцисс (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси абсцисс, и получить
точку окружности, которая имеет рассматриваемую абсциссу. Следовательно, область значений функции 13. Это можно записать так: 3.

Как видим, наибольшее значение функции 16равно единице. Это зна­чение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при 15.

Наименьшее значение функции cos x равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окруж­ности является точка B, то есть при 17.

Косинус — четная функция: 4, поэтому ее график симметричен относительно оси 8.

Косинус — периодическая функция с наименьшим положительным периодом 21: 5. Таким об­разом, через промежутки длиной 6 вид графика функции 16повторяется.

Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси 8значение 9. Тогда соответствующее значение 20. На оси 11 значение 12. Поэтому необходимо найти такие значения 14, при которых 16, то есть абсцисса соответствующей точки единичной окружности будет равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при 22.

Промежутки знакопостоянства. Значения функции косинус положительны (то есть абсцисса соответствующей точки единичной окружности положительна) в I и IV четвертях (рис. 8). Следова­тельно, 230 при 24, а также, учитывая период, при всех 25.

Значения функции косинус отрицательны (то есть абсцисса соответству­ющей точки единичной окружности отрицательна) во II и III четвертях, поэтому 26 при 27

Промежутки возрастания и убывания. Учитывая периодичность функции 28, достаточно исследовать ее на возрастание и убывание на любом промежутке длиной 6, например на промежутке 29.

Если 30 (рис. 9, а), то при увеличении аргумента 31 абсцис­са соответствующей точки единичной окружности уменьшается (то есть 36), следовательно, на этом промежутке функция 16убывает. Учитывая периодичность функции 16, делаем вывод, что она также убывает на каждом из промежутков 37.

Если 34 (рис. 9, б), то при увеличении аргумента 31 аб­сцисса соответствующей точки единичной окружности увеличивается (то есть 36), таким образом, на этом промежутке функция 16 возрастает. Учитывая периодичность функции 16, делаем вывод, что она возрастает также на каждом из промежутков 37

38

Рис.8                                                                                                                          Рис.9

Проведенное исследование позволяет построить график функции 1аналогично тому, как был построен график функции Растяжение и сжатие графиков синуса и косинуса. Но график функции 1 можно также получить с помощью геометрических преобразований графика функции 1, используя формулу Растяжение и сжатие графиков синуса и косинуса

40

Рис.10

Эту формулу можно обосновать, например, так. Рассмотрим единичную окружность (рис. 10), отметим на ней точки 41а также

абсциссы и ординаты этих точек. Так как 42, то при повороте

прямоугольника 43 около точки 44 на угол — против часовой стрел­ки он перейдет в прямоугольник 46. Но тогда 48. Следовательно, 00.

Укажем также формулы, которые нам понадобятся далее:50.

Тогда,51

Таким образом, 52.

Учитывая, что 53, график функции1 можно полу­чить из графика функции Растяжение и сжатие графиков синуса и косинуса его параллельным переносом вдоль оси 11 на 54 (рис. 11). Полученный график называется косинусоидой (рис. 12).

55

Рис.11

56

Рис.12

График функции 1 (тангенсоида) 

Растяжение и сжатие графиков синуса и косинуса

Свойства функции 1:

1. Область определения:Растяжение и сжатие графиков синуса и косинуса 

2. Область значений: Растяжение и сжатие графиков синуса и косинуса

3. Функция нечетная: Растяжение и сжатие графиков синуса и косинуса

4. Функция периодическая с периодом Растяжение и сжатие графиков синуса и косинуса

5. Точки пересечения с осями координат: Растяжение и сжатие графиков синуса и косинуса  Растяжение и сжатие графиков синуса и косинуса