Растяжение и сжатие графиков синуса и косинуса
Анна Малкова
В этой статье мы расскажем об основных преобразованиях графиков функций. Что нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали. Как задать растяжение графика по горизонтали или вертикали. Как отразить график относительно оси Х или Y.
Очень жаль, что эта тема — полезная и очень интересная — выпадает из школьной программы. На нее не постоянно хватает времени. Из-за этого многим старшеклассникам не даются задачи с параметрами — которые на самом деле похожи на конструктор, где вы собираете решение из знакомых элементов. Хотя бы для того, чтобы решать задачи с параметрами, стоит научиться строить графики функций.
Но конечно, не только для того, чтобы сдать ЕГЭ. Первая лекция на первом курсе технического или экономического вуза посвящена функциям и графикам. Первые зачеты в курсе матанализа связаны с функциями и графиками.
Начнем со сдвигов графиков по Х и по Y.
Сдвиг по горизонтали.
Пусть функция задана формулой и Тогда график функции сдвинут относительно исходной на а вправо. График функции сдвинут относительно исходной на а влево.
1. Сдвиг по вертикали.
Пусть функция задана формулой и С — некоторое положительное число. Тогда график функции сдвинут относительно исходного на С вверх. График функции сдвинут относительно исходного на С вниз.
Теперь растяжение графика. Или сжатие.
2. Растяжение (сжатие) по горизонтали.
Пусть функция задана формулой и Тогда график функции растянут относительно исходного в k раз по горизонтали, если , и сжат относительно исходного в k раз по горизонтали, если
3. Растяжение (сжатие) по вертикали
Пусть функция задана формулой и Тогда график функции растянут относительно исходного в М раз по вертикали, если , и сжат относительно исходного в М раз по вертикали, если
И отражение по горизонтали.
4. Отражение по горизонтали
График функции симметричен графику функции относительно оси Y.
5. Отражение по вертикали.
График функции симметричен графику функции относительно оси Х.
Друзья, не возникло ли у вас ощущения, что вы все это где-то видели? Да, наверняка видели, если когда-либо редактировали изображения в графическом редакторе на компьютере. Изображение можно сдвинуть (по горизонтали или вертикали). Растянуть (по горизонтали или вертикали). Отразить. И все это мы делаем с графиками функций.
И еще два интересных преобразования. Здесь в формулах присутствует знак модуля. Если не помните, что такое модуль, — срочно повторите эту тему.
6. Графики функций и
На рисунке изображен график функции Она специально взята такая — несимметричная относительно нуля.
Построим график функции
Конечно же, мы пользуемся определением модуля.
Это мы и видим на графике. Для неотрицательных значений х график остался таким же, как был. А вместо каждого отрицательного х мы взяли противоположное ему положительное число. И поэтому вся та часть графика функции, что лежала слева от оси Х, заменилась на зеркально отраженную правую часть графика.
Теперь график функции Вы уже догадались, что будет. Вся часть графика, лежащая ниже оси Х, зеркально отражается в верхнюю полуплоскость. А верхняя часть графика, лежащая выше оси Х, остается на месте.
Как определить по формуле функции, будет график преобразован по горизонтали (по Х) или по вертикали (по Y)? Разница очевидна. Если сначала мы что-либо делаем с аргументом х (прибавляем к нему какое-либо число, умножаем на какое-либо число или берем модуль) — преобразование по Х. Если сначала мы нашли функцию, а затем уже к значению функции что-то прибавили, или на какое-нибудь число умножили, или взяли модуль, — преобразование по Y.
Вот самые простые задачи на преобразование графиков.
1. Построим график функции
Это квадратичная парабола, сдвинутая на 3 влево по x и на 1 вниз по y.
Вершина в точке
2. Построим график функции
Выделим полный квадрат в формуле.
График — квадратичная парабола, сдвинутая на 2 вправо по x и на 5 вниз по y.
Обратите внимание: график функции пересекает ось y в точке На нашем графике это точка
Продолжение — в статье «Построение графиков функций».
Источник
Основные элементарные функции в чистом виде без преобразования встречаются редко, поэтому чаще всего приходится работать с элементарными функциями, которые получили из основных с помощью добавления констант и коэффициентов. Такие графики строятся при помощи геометрических преобразований заданных элементарных функций.
Рассмотрим на примере квадратичной функции вида y=-13x+232+2, графиком которой является парабола y=x2, которая сжата втрое относительно Оу и симметрична относительно Ох, причем сдвинутую на 23 по Ох вправо, на 2 единицы по Оу вверх. На координатной прямой это выглядит так:
Геометрические преобразования графика функции
Применяя геометрические преобразования заданного графика получаем, что график изображается функцией вида ±k1·f(±k2·(x+a))+b, когда k1>0, k2>0 являются коэффициентами сжатия при 0<k1<1, 0<k2<1 или растяжения при k1>1, k2>1 вдоль Оу и Ох. Знак перед коэффициентами k1 и k2 говорит о симметричном отображении графика относительно осей, a и b сдвигают ее по Ох и по Оу.
Существует 3 вида геометрических преобразований графика:
- Масштабирование вдоль Ох и Оу. На это влияют коэффициенты k1 и k2 при условии не равности 1, когда 0<k1<1, 0<k2<1, то график сжимается по Оу, а растягивается по Ох, когда k1>1, k2>1, то график растягивается по Оу и сжимается по Ох.
- Симметричное отображение относительно координатных осей. При наличии знака «-» перед k1 симметрия идет относительно Ох, перед k2 идет относительно Оу. Если «-» отсутствует, тогда пункт при решении пропускается;
- Параллельный перенос (сдвиг) вдоль Ох и Оу. Преобразование производится при наличии коэффициентов a и b неравных 0. Если значение a положительное, до график сдвигается влево на |а|единиц, если отрицательное a, тогда в право на такое же расстояние. Значение b определяет движение по оси Оу, что значит при положительном b функция движется вверх, при отрицательном – вниз.
Степенная функция
Рассмотрим решения на примерах, начиная со степенной функции.
Преобразовать y=x23 и построить график функции y=-12·8x-423+3.
Решение
Представим функции таким образом:
y=-12·8x-423+3=-12·8x-1223+3=-2x-1223+3
Где k1=2, стоит обратить внимание на наличие «-», а=-12 , b=3. Отсюда получаем, что геометрические преобразования производятся с растяжения вдоль Оу вдвое, отображается симметрично относительно Ох, сдвигается вправо на 12 и вверх на 3 единицы.
Если изобразить исходную степенную функцию, получим, что
при растягивании вдвое вдоль Оу имеем, что
Отображение, симметричное относительно Ох, имеет вид
а движение вправо на 12
движение на 3 единицы вверх имеет вид
Показательная функция
Преобразования показательной функции рассмотрим на примерах.
Произвести построение графика показательной функции y=-1212(2-x)+8.
Решение.
Преобразуем функцию, исходя из свойств степенной функции. Тогда получим, что
y=-1212(2-x)+8=-12-12x+1+8=-12·12-12x+8
Отсюда видно, что получим цепочку преобразований y=12x:
y=12x→y=12·12x→y=12·1212x→→y=-12·1212x→y=-12·12-12x→→y=-12·12-12x+8
Получаем, что исходная показательная функция имеет вид
Сжимание вдвое вдоль Оу дает
Растягивание вдоль Ох
Симметричное отображение относительно Ох
Отображение симметрично относительно Оу
Сдвигание на 8 единиц вверх
Логарифмическая функция
Рассмотрим решение на примере логарифмической функции y=ln(x).
Построить функцию y=lne2·-12×3 при помощи преобразования y=ln(x).
Решение
Для решения необходимо использовать свойства логарифма, тогда получаем:
y=lne2·-12×3=ln(e2)+ln-12×13=13ln-12x+2
Преобразования логарифмической функции выглядят так:
y=ln(x)→y=13ln(x)→y=13ln12x→→y=13ln-12x→y=13ln-12x+2
Изобразим график исходной логарифмической функции
Производим сжимание строе по Оу
Производим растягивание вдоль Ох
Производим отображение относительно Оу
Производим сдвигание вверх на 2 единицы, получаем
Для преобразования графиков тригонометрической функциинеобходимо подгонять под схему решения вида ±k1·f(±k2·(x+a))+b. Необходимо , чтобы k2 приравнивался к Tk2. Отсюда получаем, что 0<k2<1 дает понять, что график функции увеличивает период по Ох, при k1 уменьшает его. От коэффициента k1 зависит амплитуда колебаний синусоиды и косинусоиды.
Преобразования y = sin x
Рассмотрим примеры решения заданий с преобразованиями y=sinx.
Построить график y=-3sin12x-32-2 с помощью преобразований функции y=sinx.
Решение
Необходимо привести функцию к виду ±k1·f±k2·x+a+b. Для этого:
y=-3sin12x-32-2=-3sin12(x-3)-2
Видно, что k1=3, k2=12, a=-3, b=-2. Так как перед k1 имеется «-», а перед k2 — нет, тогда получим цепочку преобразований вида:
y=sin(x)→y=3sin(x)→y=3sin12x→y=-3sin12x→→y=-3sin12x-3→y=-3sin12(x-3)-2
Подробное преобразование синусоиды. При построении графика исходной синусоиды y=sin(x) получаем, что наименьшим положительным периодом считается T=2π. Нахождение максимума в точках π2+2π·k; 1, а минимума — -π2+2π·k; -1, k∈Z.
Производится растягивание по Оу втрое, значит возрастание амплитуды колебаний возрастет в 3 раза. T=2π — это наименьший положительный период. Максимумы переходят в π2+2π·k; 3, k∈Z , минимумы — -π2+2π·k; -3, k∈Z.
При растягивании по Ох вдвое получаем, что наименьший положительный период увеличивается в 2 раза и равняется T=2πk2=4π. Максимумы переходят в π+4π·k; 3, k∈Z, минимумы – в -π+4π·k; -3, k∈Z.
Изображение производится симметрично относительно Ох. Наименьший положительный период в данном случае не меняется и равняется T=2πk2=4π. Переход максимума выглядит как -π+4π·k; 3, k∈Z, а минимума – π+4π·k; -3, k∈Z.
Производится сдвижение графика вниз на 2 единицы. Изменение наименьшего общего периода не происходит. Нахождение максимумов с перехождением в точки -π+3+4π·k; 1, k∈Z, минимумов — π+3+4π·k; -5, k∈Z.
На данном этапе график тригонометрической функции считается преобразованным.
Преобразование функции y = cos x
Рассмотрим подробное преобразование функции y=cosx.
Построить график функции y=32cos2-2x+1 при помощи преобразования функции вида y=cosx.
Решение
По алгоритму необходимо заданную функцию привести к виду ±k1·f±k2·x+a+b. Тогда получаем, что
y=32cos2-2x+1=32cos(-2(x-1))+1
Из условия видно, что k1=32, k2=2, a=-1, b=1, где k2 имеет «-», а перед k1 он отсутствует.
Отсюда получаем, что получится график тригонометрической функции вида:
y=cos(x)→y=32cos(x)→y=32cos(2x)→y=32cos(-2x)→→y=32cos(-2(x-1))→y=32cos-2(x-1)+1
Пошаговое преобразование косинусоиды с графической иллюстрацией.
При заданной графике y=cos(x) видно, что наименьший общий период равняется T=2π. Нахождение максимумов в 2π·k; 1, k∈Z, а минимумов π+2π·k; -1, k∈Z.
При растягивании вдоль Оу в 32 раза происходит возрастание амплитуды колебаний в 32 раза.T=2π является наименьшим положительным периодом. Нахождение максимумов в 2π·k; 32, k∈Z, минимумов в π+2π·k; -32, k∈Z.
При сжатии вдоль Ох вдвое получаем, что наименьшим положительным периодом является число T=2πk2=π. Производится переход максимумов в π·k; 32, k∈Z,минимумов — π2+π·k; -32, k∈Z.
Симметричное отображение относительно Оу. Так как график нечетный, то он не будет изменяться.
При сдвигании графика на 1. Отсутствуют изменения наименьшего положительного периода T=π. Нахождение максимумов в π·k+1; 32, k∈Z, минимумов — π2+1+π·k; -32, k∈Z.
При сдвигании на 1 наименьший положительный период равняется T=π и не изменен. Нахождение максимумов в π·k+1; 52, k∈Z, минимумов в π2+1+π·k; -12, k∈Z.
Преобразования функции косинуса завершено.
Преобразования y = tgx
Рассмотрим преобразования на примере y=tgx.
Построить график функции y=-12tgπ3-23x+π3 при помощи преобразований функции y=tg(x).
Решение
Для начала необходимо привести заданную функцию к виду ±k1·f±k2·x+a+b, после чего получаем, что
y=-12tgπ3-23x+π3=-12tg-23x-π2+π3
Отчетливо видно, что k1=12, k2=23, a=-π2, b=π3, а перед коэффициентами k1 и k2 имеется «-». Значит, после преобразования тангенсоиды получаем
y=tg(x)→y=12tg(x)→y=12tg23x→y=-12tg23x→→y=-12tg-23x→y=-12tg-23x-π2→→y=-12tg-23x-π2+π3
Поэтапное преобразование тангенсоиды с графическим изображением.
Имеем, что исходный график – это y=tg(x). Изменение положительного периода равняется T=π. Областью определения считается -π2+π·k; π2+π·k, k∈Z.
Сжимаем в 2 раза вдоль Оу. T=π считается наименьшим положительным периодом, где область определения имеет вид -π2+π·k; π2+π·k, k∈Z.
Растягиваем вдоль Ох в 32 раза. Вычислим наименьший положительный период, причем равнялся T=πk2=32π. А область определения функции с координатами -3π4+32π·k; 3π4+32π·k, k∈Z , меняется только область определения.
Симметрия идет по сторону Ох. Период не изменится в этот момент.
Необходимо симметрично отображать оси координат. Область определения в данном случае неизменна. График совпадает с предыдущим. Это говорит о том, что функция тангенса нечетная. Если к нечетной функции задать симметричное отображение Ох и Оу, тогда преобразуем до исходной функции.
При движении вправо на π2 видим, что наименьшим положительным периодом является T=32π. А изменения происходят внутри области определения -π4+32π·k; 5π4+32π·k, k∈Z.
При сдвигании графика на π3 получаем, что изменение области определения отсутствует.
Преобразование тангенса завершено.
Тригонометрическая функция вида y=arccosx
Рассмотрим на примере тригонометрической функции вида y=arccosx.
Построить график функции y=2arcsin13(x-1) при помощи преобразования y=arccosx.
Решение
Для начала необходимо перейти от арккосинуса к арксинусу при помощи обратных тригонометрических функций arcsin x+arcocos x=π2. Значит, получим, что arcsinx=π2-arccosx.
Видно, что y=arccosx→y=-arccosx→y=-arccosx+π2.
Поэтапное преобразование арккосинуса и графическое изображение.
График, данный по условию
Производим отображение относительно Ох
Производим движение вверх на π2.
Таким образом, осуществляется переход от арккосинуса к косинусу. Необходимо произвести геометрические преобразования арксинуса и его графика.
Видно, что k1=2, k2=13, a=-1, b=0, где отсутствует знак «-» у k1 и k2.
Отсюда получаем, что преобразования y=arcsinx примет вид:
y=arcsin(x)→y=2arcsin(x)→→y=2arcsin13x→y=2arcsin13(x-1)
Поэтапное преобразование графика арксинуса и графическое изображение.
График y=arcsinx имеет область определения вида x∈-1; 1, тогда интервал y∈-π2; π2 относится к области значений.
Необходимо растянуть вдвое по Оу, причем область определения останется неизменной x∈-1; 1, а область значений y∈-π; π.
Растягивание по Ох строе. Происходит расширение области определения x∈-3; 3, но область значений остается неизменной y∈-π; π.
Производим сдвигание вправо на 1, причем область определения становится равной x∈-2; 4. Без изменений остается область значений y∈-π; π.
Задача преобразования графика обратной тригонометрической функции завершена. Если по условию имеются сложные функции, тогда необходимо прибегнуть к полному исследованию функция.
Источник
Свойства функции y=sin(x) и ее график.
График функции (синусоида)
Свойства функции
- Область определения: R (x — любое действительное число) т.е.
- Область значений:
Функция нечетная:
(график симметричен относительно начала координат).
- Функция периодическая с периодом
- Точки пересечения с осями координат:
- Промежутки знакопостоянства:
- Промежутки возрастания и убывания:
Объяснение и обоснование
Описывая свойства функций, мы будем чаще всего выделять такие их характеристики: 1) область определения; 2) область значений; 3) четность или нечетность; 4) периодичность; 5) точки пересечения с осями координат; 6) промежутки знакопостоянства; 7) промежутки возрастания и убывания; 8) наибольшее и наименьшее значения функции.
Замечание. Абсциссы точек пересечения графика функции с осью Ох (то есть те значения аргумента, при которых функция равна нулю) называют нулями функции.
Напомним, что значение синуса — это ордината соответствующей точки единичной окружности (рис. 1).
Рис.1.
Поскольку ординату можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности всегда можно провести единственную прямую, перпендикулярную оси ординат), то область определения функции — все действительные числа. Это можно записать так:
Для точек единичной окружности ординаты находятся в промежутке [—1; 1] и принимают все значения от —1 до 1, поскольку через любую точку отрезка [—1; 1] оси ординат (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси ординат, и получить точку окружности, которая имеет рассматриваемую ординату. Таким образом, для функции область значений: . Это можно записать так:.Как видим, наибольшее значение функции sin x равно единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при Наименьшее значение функции равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка B, то есть при.
Синус — нечетная функция: , поэтому ее график симметричен относительно начала координат.
Синус — периодическая функция с наименьшим положительным периодом : , таким образом, через промежутки длиной вид графика функции повторяется. Поэтому при построении графика этой функции достаточно построить график на любом промежутке длиной , а потом полученную линию параллельно перенести вправо и влево вдоль оси Ox на расстояние , где k — любое натуральное число.
Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси значение . Тогда соответствующее значение , то есть график функции проходит через начало координат.
На оси значение . Поэтому необходимо найти такие значения , при которых , то есть ордината соответствующей точки единичной окружности, равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при (см. рис. 1).
Промежутки знакопостоянства. Значения функции синус положительны (то есть ордината соответствующей точки единичной окружности положительна) в I и II четвертях (рис. 2). Таким образом, при всех , а также, учитывая период, при всех .
Значения функции синус отрицательны (то есть ордината соответствующей точки единичной окружности отрицательна) в III и IV четвертях, поэтому при .
Промежутки возрастания и убывания. Учитывая периодичность функции с периодом , достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке .
Если (рис. 3, а), то при увеличении аргумента ордината соответствующей точки единичной окружности увеличивается (то есть , следовательно, на этом промежутке функция возрастает. Учитывая периодичность функции , делаем вывод, что она также возрастает на каждом из промежутков
Рис.2 Рис.3
Если (рис.3,б), то при увеличении аргумента ордината соответствующей точки единичной окружности уменьшается (то есть ), таким образом, на этом промежутке функция убывает. Учитывая периодичность функции , делаем вывод, что она также убывает на каждом из промежутков
Проведенное исследование позволяет обоснованно построить график функции . Учитывая периодичность этой функции (с периодом ), достаточно сначала построить график на любом промежутке длиной , например на промежутке . Для более точного построения точек графика воспользуемся тем, что значение синуса — это ордината соответствующей точки единичной окружности. На рисунке 4 показано построение графика функции на промежутке . Учитывая нечетность функции (ее график симметричен относительно начала координат), для построения графика на промежутке отображаем полученную кривую симметрично относительно начала координат (рис. 5).
Рис.4
Рис.5
Поскольку мы построили график на промежутке длиной , то, учитывая периодичность синуса (с периодом ), повторяем вид графика на каждом промежутке длиной (то есть переносим параллельно график вдоль оси на , где k — целое число). Получаем график, который называется синусоидой .(Рис.6)
Рис.6
Замечание. Тригонометрические функции широко применяются в математике, физике и технике. Например, множество процессов, таких как колебания струны, маятника, напряжения в цепи переменного тока и т. п., описываются функцией, которая задается формулой . Такие процессы называют гармоническими колебаниями.
График функции можно получить из синусоиды сжатием или растяжением ее вдоль координатных осей и параллельным переносом вдоль оси . Чаще всего гармоническое колебание является функцией времени t. Тогда оно задается формулой , где А — амплитуда
колебания, — частота, — начальная фаза, — период колебания.
СВОЙСТВА ФУНКЦИИ И ЕЕ ГРАФИК
График функции (косинусоида).
Свойства функции
- Область определения: R (x — любое действительное число).
- Область значений:
Функция четная:
(график симметричен относительно оси ).
- Функция периодическая с периодом :
- Точки пересечения с осями координат
- Промежутки знакопостоянства:
- Промежутки возрастания и убывания:
Объяснение и обоснование
Напомним, что значение косинуса — это абсцисса соответствующей точки единичной окружности (рис.7). Поскольку абсциссу можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности, всегда можно провести единственную прямую, перпендикулярную оси абсцисс), то область определения функции — все действительные числа. Это можно записать так:
.
Рис.7
Для точек единичной окружности абсциссы находятся в промежутке и принимают все значения от -1 до 1, поскольку через любую точку отрезка оси абсцисс (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси абсцисс, и получить
точку окружности, которая имеет рассматриваемую абсциссу. Следовательно, область значений функции . Это можно записать так: .
Как видим, наибольшее значение функции равно единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при .
Наименьшее значение функции cos x равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окружности является точка B, то есть при .
Косинус — четная функция: , поэтому ее график симметричен относительно оси .
Косинус — периодическая функция с наименьшим положительным периодом : . Таким образом, через промежутки длиной вид графика функции повторяется.
Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси значение . Тогда соответствующее значение . На оси значение . Поэтому необходимо найти такие значения , при которых , то есть абсцисса соответствующей точки единичной окружности будет равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при .
Промежутки знакопостоянства. Значения функции косинус положительны (то есть абсцисса соответствующей точки единичной окружности положительна) в I и IV четвертях (рис. 8). Следовательно, 0 при , а также, учитывая период, при всех .
Значения функции косинус отрицательны (то есть абсцисса соответствующей точки единичной окружности отрицательна) во II и III четвертях, поэтому при
Промежутки возрастания и убывания. Учитывая периодичность функции , достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке .
Если (рис. 9, а), то при увеличении аргумента абсцисса соответствующей точки единичной окружности уменьшается (то есть ), следовательно, на этом промежутке функция убывает. Учитывая периодичность функции , делаем вывод, что она также убывает на каждом из промежутков .
Если (рис. 9, б), то при увеличении аргумента абсцисса соответствующей точки единичной окружности увеличивается (то есть ), таким образом, на этом промежутке функция возрастает. Учитывая периодичность функции , делаем вывод, что она возрастает также на каждом из промежутков .
Рис.8 Рис.9
Проведенное исследование позволяет построить график функции аналогично тому, как был построен график функции . Но график функции можно также получить с помощью геометрических преобразований графика функции , используя формулу
Рис.10
Эту формулу можно обосновать, например, так. Рассмотрим единичную окружность (рис. 10), отметим на ней точки а также
абсциссы и ординаты этих точек. Так как , то при повороте
прямоугольника около точки на угол — против часовой стрелки он перейдет в прямоугольник . Но тогда . Следовательно, 00.
Укажем также формулы, которые нам понадобятся далее:.
Тогда,
Таким образом, .
Учитывая, что , график функции можно получить из графика функции его параллельным переносом вдоль оси на (рис. 11). Полученный график называется косинусоидой (рис. 12).
Рис.11
Рис.12
График функции (тангенсоида)
Свойства функции :
1. Область определения:
2. Область значений:
3. Функция нечетная:
4. Функция периодическая с периодом
5. Точки пересечения с осями координат: