Растяжение графика функции y sin
Анна Малкова
В этой статье мы расскажем об основных преобразованиях графиков функций. Что нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали. Как задать растяжение графика по горизонтали или вертикали. Как отразить график относительно оси Х или Y.
Очень жаль, что эта тема — полезная и очень интересная — выпадает из школьной программы. На нее не постоянно хватает времени. Из-за этого многим старшеклассникам не даются задачи с параметрами — которые на самом деле похожи на конструктор, где вы собираете решение из знакомых элементов. Хотя бы для того, чтобы решать задачи с параметрами, стоит научиться строить графики функций.
Но конечно, не только для того, чтобы сдать ЕГЭ. Первая лекция на первом курсе технического или экономического вуза посвящена функциям и графикам. Первые зачеты в курсе матанализа связаны с функциями и графиками.
Начнем со сдвигов графиков по Х и по Y.
Сдвиг по горизонтали.
Пусть функция задана формулой и Тогда график функции сдвинут относительно исходной на а вправо. График функции сдвинут относительно исходной на а влево.
1. Сдвиг по вертикали.
Пусть функция задана формулой и С — некоторое положительное число. Тогда график функции сдвинут относительно исходного на С вверх. График функции сдвинут относительно исходного на С вниз.
Теперь растяжение графика. Или сжатие.
2. Растяжение (сжатие) по горизонтали.
Пусть функция задана формулой и Тогда график функции растянут относительно исходного в k раз по горизонтали, если , и сжат относительно исходного в k раз по горизонтали, если
3. Растяжение (сжатие) по вертикали
Пусть функция задана формулой и Тогда график функции растянут относительно исходного в М раз по вертикали, если , и сжат относительно исходного в М раз по вертикали, если
И отражение по горизонтали.
4. Отражение по горизонтали
График функции симметричен графику функции относительно оси Y.
5. Отражение по вертикали.
График функции симметричен графику функции относительно оси Х.
Друзья, не возникло ли у вас ощущения, что вы все это где-то видели? Да, наверняка видели, если когда-либо редактировали изображения в графическом редакторе на компьютере. Изображение можно сдвинуть (по горизонтали или вертикали). Растянуть (по горизонтали или вертикали). Отразить. И все это мы делаем с графиками функций.
И еще два интересных преобразования. Здесь в формулах присутствует знак модуля. Если не помните, что такое модуль, — срочно повторите эту тему.
6. Графики функций и
На рисунке изображен график функции Она специально взята такая — несимметричная относительно нуля.
Построим график функции
Конечно же, мы пользуемся определением модуля.
Это мы и видим на графике. Для неотрицательных значений х график остался таким же, как был. А вместо каждого отрицательного х мы взяли противоположное ему положительное число. И поэтому вся та часть графика функции, что лежала слева от оси Х, заменилась на зеркально отраженную правую часть графика.
Теперь график функции Вы уже догадались, что будет. Вся часть графика, лежащая ниже оси Х, зеркально отражается в верхнюю полуплоскость. А верхняя часть графика, лежащая выше оси Х, остается на месте.
Как определить по формуле функции, будет график преобразован по горизонтали (по Х) или по вертикали (по Y)? Разница очевидна. Если сначала мы что-либо делаем с аргументом х (прибавляем к нему какое-либо число, умножаем на какое-либо число или берем модуль) — преобразование по Х. Если сначала мы нашли функцию, а затем уже к значению функции что-то прибавили, или на какое-нибудь число умножили, или взяли модуль, — преобразование по Y.
Вот самые простые задачи на преобразование графиков.
1. Построим график функции
Это квадратичная парабола, сдвинутая на 3 влево по x и на 1 вниз по y.
Вершина в точке
2. Построим график функции
Выделим полный квадрат в формуле.
График — квадратичная парабола, сдвинутая на 2 вправо по x и на 5 вниз по y.
Обратите внимание: график функции пересекает ось y в точке На нашем графике это точка
Продолжение — в статье «Построение графиков функций».
Источник
Основные элементарные функции в чистом виде без преобразования встречаются редко, поэтому чаще всего приходится работать с элементарными функциями, которые получили из основных с помощью добавления констант и коэффициентов. Такие графики строятся при помощи геометрических преобразований заданных элементарных функций.
Рассмотрим на примере квадратичной функции вида y=-13x+232+2, графиком которой является парабола y=x2, которая сжата втрое относительно Оу и симметрична относительно Ох, причем сдвинутую на 23 по Ох вправо, на 2 единицы по Оу вверх. На координатной прямой это выглядит так:
Геометрические преобразования графика функции
Применяя геометрические преобразования заданного графика получаем, что график изображается функцией вида ±k1·f(±k2·(x+a))+b, когда k1>0, k2>0 являются коэффициентами сжатия при 0<k1<1, 0<k2<1 или растяжения при k1>1, k2>1 вдоль Оу и Ох. Знак перед коэффициентами k1 и k2 говорит о симметричном отображении графика относительно осей, a и b сдвигают ее по Ох и по Оу.
Существует 3 вида геометрических преобразований графика:
- Масштабирование вдоль Ох и Оу. На это влияют коэффициенты k1 и k2 при условии не равности 1, когда 0<k1<1, 0<k2<1, то график сжимается по Оу, а растягивается по Ох, когда k1>1, k2>1, то график растягивается по Оу и сжимается по Ох.
- Симметричное отображение относительно координатных осей. При наличии знака «-» перед k1 симметрия идет относительно Ох, перед k2 идет относительно Оу. Если «-» отсутствует, тогда пункт при решении пропускается;
- Параллельный перенос (сдвиг) вдоль Ох и Оу. Преобразование производится при наличии коэффициентов a и b неравных 0. Если значение a положительное, до график сдвигается влево на |а|единиц, если отрицательное a, тогда в право на такое же расстояние. Значение b определяет движение по оси Оу, что значит при положительном b функция движется вверх, при отрицательном – вниз.
Степенная функция
Рассмотрим решения на примерах, начиная со степенной функции.
Преобразовать y=x23 и построить график функции y=-12·8x-423+3.
Решение
Представим функции таким образом:
y=-12·8x-423+3=-12·8x-1223+3=-2x-1223+3
Где k1=2, стоит обратить внимание на наличие «-», а=-12 , b=3. Отсюда получаем, что геометрические преобразования производятся с растяжения вдоль Оу вдвое, отображается симметрично относительно Ох, сдвигается вправо на 12 и вверх на 3 единицы.
Если изобразить исходную степенную функцию, получим, что
при растягивании вдвое вдоль Оу имеем, что
Отображение, симметричное относительно Ох, имеет вид
а движение вправо на 12
движение на 3 единицы вверх имеет вид
Показательная функция
Преобразования показательной функции рассмотрим на примерах.
Произвести построение графика показательной функции y=-1212(2-x)+8.
Решение.
Преобразуем функцию, исходя из свойств степенной функции. Тогда получим, что
y=-1212(2-x)+8=-12-12x+1+8=-12·12-12x+8
Отсюда видно, что получим цепочку преобразований y=12x:
y=12x→y=12·12x→y=12·1212x→→y=-12·1212x→y=-12·12-12x→→y=-12·12-12x+8
Получаем, что исходная показательная функция имеет вид
Сжимание вдвое вдоль Оу дает
Растягивание вдоль Ох
Симметричное отображение относительно Ох
Отображение симметрично относительно Оу
Сдвигание на 8 единиц вверх
Логарифмическая функция
Рассмотрим решение на примере логарифмической функции y=ln(x).
Построить функцию y=lne2·-12×3 при помощи преобразования y=ln(x).
Решение
Для решения необходимо использовать свойства логарифма, тогда получаем:
y=lne2·-12×3=ln(e2)+ln-12×13=13ln-12x+2
Преобразования логарифмической функции выглядят так:
y=ln(x)→y=13ln(x)→y=13ln12x→→y=13ln-12x→y=13ln-12x+2
Изобразим график исходной логарифмической функции
Производим сжимание строе по Оу
Производим растягивание вдоль Ох
Производим отображение относительно Оу
Производим сдвигание вверх на 2 единицы, получаем
Для преобразования графиков тригонометрической функциинеобходимо подгонять под схему решения вида ±k1·f(±k2·(x+a))+b. Необходимо , чтобы k2 приравнивался к Tk2. Отсюда получаем, что 0<k2<1 дает понять, что график функции увеличивает период по Ох, при k1 уменьшает его. От коэффициента k1 зависит амплитуда колебаний синусоиды и косинусоиды.
Преобразования y = sin x
Рассмотрим примеры решения заданий с преобразованиями y=sinx.
Построить график y=-3sin12x-32-2 с помощью преобразований функции y=sinx.
Решение
Необходимо привести функцию к виду ±k1·f±k2·x+a+b. Для этого:
y=-3sin12x-32-2=-3sin12(x-3)-2
Видно, что k1=3, k2=12, a=-3, b=-2. Так как перед k1 имеется «-», а перед k2 — нет, тогда получим цепочку преобразований вида:
y=sin(x)→y=3sin(x)→y=3sin12x→y=-3sin12x→→y=-3sin12x-3→y=-3sin12(x-3)-2
Подробное преобразование синусоиды. При построении графика исходной синусоиды y=sin(x) получаем, что наименьшим положительным периодом считается T=2π. Нахождение максимума в точках π2+2π·k; 1, а минимума — -π2+2π·k; -1, k∈Z.
Производится растягивание по Оу втрое, значит возрастание амплитуды колебаний возрастет в 3 раза. T=2π — это наименьший положительный период. Максимумы переходят в π2+2π·k; 3, k∈Z , минимумы — -π2+2π·k; -3, k∈Z.
При растягивании по Ох вдвое получаем, что наименьший положительный период увеличивается в 2 раза и равняется T=2πk2=4π. Максимумы переходят в π+4π·k; 3, k∈Z, минимумы – в -π+4π·k; -3, k∈Z.
Изображение производится симметрично относительно Ох. Наименьший положительный период в данном случае не меняется и равняется T=2πk2=4π. Переход максимума выглядит как -π+4π·k; 3, k∈Z, а минимума – π+4π·k; -3, k∈Z.
Производится сдвижение графика вниз на 2 единицы. Изменение наименьшего общего периода не происходит. Нахождение максимумов с перехождением в точки -π+3+4π·k; 1, k∈Z, минимумов — π+3+4π·k; -5, k∈Z.
На данном этапе график тригонометрической функции считается преобразованным.
Преобразование функции y = cos x
Рассмотрим подробное преобразование функции y=cosx.
Построить график функции y=32cos2-2x+1 при помощи преобразования функции вида y=cosx.
Решение
По алгоритму необходимо заданную функцию привести к виду ±k1·f±k2·x+a+b. Тогда получаем, что
y=32cos2-2x+1=32cos(-2(x-1))+1
Из условия видно, что k1=32, k2=2, a=-1, b=1, где k2 имеет «-», а перед k1 он отсутствует.
Отсюда получаем, что получится график тригонометрической функции вида:
y=cos(x)→y=32cos(x)→y=32cos(2x)→y=32cos(-2x)→→y=32cos(-2(x-1))→y=32cos-2(x-1)+1
Пошаговое преобразование косинусоиды с графической иллюстрацией.
При заданной графике y=cos(x) видно, что наименьший общий период равняется T=2π. Нахождение максимумов в 2π·k; 1, k∈Z, а минимумов π+2π·k; -1, k∈Z.
При растягивании вдоль Оу в 32 раза происходит возрастание амплитуды колебаний в 32 раза.T=2π является наименьшим положительным периодом. Нахождение максимумов в 2π·k; 32, k∈Z, минимумов в π+2π·k; -32, k∈Z.
При сжатии вдоль Ох вдвое получаем, что наименьшим положительным периодом является число T=2πk2=π. Производится переход максимумов в π·k; 32, k∈Z,минимумов — π2+π·k; -32, k∈Z.
Симметричное отображение относительно Оу. Так как график нечетный, то он не будет изменяться.
При сдвигании графика на 1. Отсутствуют изменения наименьшего положительного периода T=π. Нахождение максимумов в π·k+1; 32, k∈Z, минимумов — π2+1+π·k; -32, k∈Z.
При сдвигании на 1 наименьший положительный период равняется T=π и не изменен. Нахождение максимумов в π·k+1; 52, k∈Z, минимумов в π2+1+π·k; -12, k∈Z.
Преобразования функции косинуса завершено.
Преобразования y = tgx
Рассмотрим преобразования на примере y=tgx.
Построить график функции y=-12tgπ3-23x+π3 при помощи преобразований функции y=tg(x).
Решение
Для начала необходимо привести заданную функцию к виду ±k1·f±k2·x+a+b, после чего получаем, что
y=-12tgπ3-23x+π3=-12tg-23x-π2+π3
Отчетливо видно, что k1=12, k2=23, a=-π2, b=π3, а перед коэффициентами k1 и k2 имеется «-». Значит, после преобразования тангенсоиды получаем
y=tg(x)→y=12tg(x)→y=12tg23x→y=-12tg23x→→y=-12tg-23x→y=-12tg-23x-π2→→y=-12tg-23x-π2+π3
Поэтапное преобразование тангенсоиды с графическим изображением.
Имеем, что исходный график – это y=tg(x). Изменение положительного периода равняется T=π. Областью определения считается -π2+π·k; π2+π·k, k∈Z.
Сжимаем в 2 раза вдоль Оу. T=π считается наименьшим положительным периодом, где область определения имеет вид -π2+π·k; π2+π·k, k∈Z.
Растягиваем вдоль Ох в 32 раза. Вычислим наименьший положительный период, причем равнялся T=πk2=32π. А область определения функции с координатами -3π4+32π·k; 3π4+32π·k, k∈Z , меняется только область определения.
Симметрия идет по сторону Ох. Период не изменится в этот момент.
Необходимо симметрично отображать оси координат. Область определения в данном случае неизменна. График совпадает с предыдущим. Это говорит о том, что функция тангенса нечетная. Если к нечетной функции задать симметричное отображение Ох и Оу, тогда преобразуем до исходной функции.
При движении вправо на π2 видим, что наименьшим положительным периодом является T=32π. А изменения происходят внутри области определения -π4+32π·k; 5π4+32π·k, k∈Z.
При сдвигании графика на π3 получаем, что изменение области определения отсутствует.
Преобразование тангенса завершено.
Тригонометрическая функция вида y=arccosx
Рассмотрим на примере тригонометрической функции вида y=arccosx.
Построить график функции y=2arcsin13(x-1) при помощи преобразования y=arccosx.
Решение
Для начала необходимо перейти от арккосинуса к арксинусу при помощи обратных тригонометрических функций arcsin x+arcocos x=π2. Значит, получим, что arcsinx=π2-arccosx.
Видно, что y=arccosx→y=-arccosx→y=-arccosx+π2.
Поэтапное преобразование арккосинуса и графическое изображение.
График, данный по условию
Производим отображение относительно Ох
Производим движение вверх на π2.
Таким образом, осуществляется переход от арккосинуса к косинусу. Необходимо произвести геометрические преобразования арксинуса и его графика.
Видно, что k1=2, k2=13, a=-1, b=0, где отсутствует знак «-» у k1 и k2.
Отсюда получаем, что преобразования y=arcsinx примет вид:
y=arcsin(x)→y=2arcsin(x)→→y=2arcsin13x→y=2arcsin13(x-1)
Поэтапное преобразование графика арксинуса и графическое изображение.
График y=arcsinx имеет область определения вида x∈-1; 1, тогда интервал y∈-π2; π2 относится к области значений.
Необходимо растянуть вдвое по Оу, причем область определения останется неизменной x∈-1; 1, а область значений y∈-π; π.
Растягивание по Ох строе. Происходит расширение области определения x∈-3; 3, но область значений остается неизменной y∈-π; π.
Производим сдвигание вправо на 1, причем область определения становится равной x∈-2; 4. Без изменений остается область значений y∈-π; π.
Задача преобразования графика обратной тригонометрической функции завершена. Если по условию имеются сложные функции, тогда необходимо прибегнуть к полному исследованию функция.
Источник
Предмет: алгебра, класс: 10 класс. В Классе 2 ученика.
Тема урока: «Преобразование графика тригонометрической функции у = sin x путем сжатия и расширения»
Тип урока: комбинированный.
Продолжительность занятия: 45 минут.
Цели урока:
Систематизировать знания и умения по теме: “Преобразование графиков тригонометрических функций вида: y = f (x) + m, y = f (x + t), y = к f (x), y = f (к x),
научиться строить графики вида: y = f (x + t) + m;
Задачи урока.
Образовательные — научиться строить графики тригонометрической функции с помощью геометрических преобразований.
Развивающие – формировать логическое мышление, умение анализировать, обобщать полученные знания, способствовать развитию самостоятельной творческой исследовательской деятельности ученика.
Воспитательные – активизировать интерес к получению новых знаний, воспитывать графическую культуру, формирование точности, внимательности и аккуратности при выполнении чертежей, чувство уважения к науке.
Оснащение: нетбук у каждого ученика, ноутбук у учителя, операционная система Microsoft Windows 98/Me/2000/XP, программа MS Office 2003: Power Point, Microsoft Word.
Литература: учебник Алимов Ш.А. и др. Алгебра и начала анализа 10-11 кл.
Технологии: ИКТ, взаимопроверка, энергосберегающая.
Вначале урока выдается лист контроля учащегося.
Ход урока
№ | Этап урока | Действие учителя | Действия учащихся |
1 | Организационный момент | Приветствие учащихся, проверка готовности учащихся к уроку, определение отсутствующих. Умение строить графики нам нужны при: решении уравнений; решении неравенств; решении заданий, связанных с исследованием свойств функций. | Подготовка тетрадей, учебников к уроку |
2 | Объявление темы и цели урока. | Объявляет тему и цели урока. ИКТ Слайд № 1,2 | Слушают и записывают тему урока в тетрадях. |
3 | Повторение и закрепление знаний, умений и навыков | Фронтальный опрос Повторить правила преобразования графиков функций: y = f(x) + m, y = f(x + t), y = к f(x), y = f (к x) с помощью чертежей. ИКТ Слайд № 3 — 15 | Проговаривают алгоритм. Просматривают преобразование графиков на по готовым чертежам. Сравнивают свой вывод с алгоритмом на слайде. Выполняют задание. Взаимопроверка. |
4 | Изложение нового материала | Вывести алгоритм построения графика функции у=а(х+t)2+m, если известен график функции у=ах2. Сформулировать и проверить гипотезу построения графика функции у=а(х+t)2+m. ИКТ Слайд № 16 — 18 Просит сделать вывод. ИКТ Слайд № 19 | Диалоговый режим работы. Выполняют построение графиков схематично. |
5 | Физкультминутка | ИКТ энергосберегающая. |
6 | Закрепление и контроль знаний, умений и навыков изученного материала; с последующей взаимопроверкой. | Вопрос: Какое преобразование необходимо выполнить, чтобы построить графики функций: 1. у = 2sinх +3 2. у = 2sin(х +) 3. y = sin- 2? Практическая работа ИКТ Слайд № 20 Выдают Лист контроля | Проговаривают алгоритм последовательногопостроения графиков. Выполняют работу (взаимопроверка). Выставляют баллы в листе контроля. |
7 | Домашнее задание | Дифференцированное и разноуровневое домашнее задание: | Записывают в дневник. |
8 | Подведение итогов. | Итоги урока. На уроке повторили правила построения графиков функций с помощью геометрических преобразований, научились строить график функции y = f (x + t) + m. Выставление оценок (подсчет баллов в листе контроля). Рефлексия. |
Источник
Ìàñøòàáèðîâàíèå — îïåðàöèÿ ñæàòèÿ èëè ðàñòÿæåíèÿ ãðàôèêà ôóíêöèè âäîëü îñåé àáñöèññ è îðäèíàò.
Òî, ÷òî òðåáóåòñÿ âûïîëíèòü ìàñøòàáèðîâàíèå, ïîêàçûâàþò êîýôôèöèåíòû k1 è k2 â óðàâíåíèè y = ± k1 f (± k2 (x + a))+b. Îíè äîëæíû áûòü íå ðàâíû åäèíèöå.
Êîãäà 0 < k1,2 <1, ñîâåðøàåì ñæàòèå ãðàôèêà îòíîñèòåëüíî y è ðàñòÿæåíèå îòíîñèòåëüíî x , êîãäà k1,2>1, âûïîëíÿåì ðàñòÿæåíèå âäîëü îñè îðäèíàò è ñæàòèå âäîëü îñè àáñöèññ.
Êîãäà ôóíêöèÿ ïðèíèìàåò âèä y = f (k2x) ,òî åñëè k2 >1 – ïðîèçâîäèì ñæàòèå ãðàôèêà ê îñè îðäèíàò (y) â k ðàç, à åñëè 0 < k2<1 — ðàñòÿæåíèå ãðàôèêà îò îñè îðäèíàò â 1/k.
Êîãäà ôóíêöèÿ ïðèíèìàåò âèä y = k1 f (x) , òî åñëè k1 >1 — îñóùåñòâëÿåì ðàñòÿæåíèå ãðàôèêà îò îñè àáñöèññ (0x) â k ðàç, à åñëè 0 < k1<1 — ñæàòèå ãðàôèêà ê îñè àáñöèññ â 1/k.
Êàëüêóëÿòîðû ïî àëãåáðå | |
Ðåøåíèÿ, ïîäñêàçêè è ó÷åáíèê ëèíåéíîé àëãåáðû îíëàéí (âñå êàëüêóëÿòîðû ïî àëãåáðå). | |
Êàëüêóëÿòîðû ïî àëãåáðå |
Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû | |
Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû: êîðíè, äðîáè, ñòåïåíè, óðàâíåíèÿ, ôèãóðû, ñèñòåìû ñ÷èñëåíèÿ è äðóãèå êàëüêóëÿòîðû. | |
Ìàòåìàòè÷åñêèå êàëüêóëÿòîðû |
Àëãåáðà 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó àëãåáðû äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Àëãåáðà 6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
Ãðàôèêè ýëåìåíòàðíûõ ôóíêöèé | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ìàòåìàòèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Ãðàôèêè ýëåìåíòàðíûõ ôóíêöèé |
Ôóíêöèÿ. Ïîêàçàòåëüíàÿ ôóíêöèÿ. | |
Ïîêàçàòåëüíîé íàçûâàåòñÿ ôóíêöèÿ ó = à õ , â êîòîðîé à ýòî ïîñòîÿííîå ïîëîæèòåëüíîå ÷èñëî. | |
Ôóíêöèÿ. Ïîêàçàòåëüíàÿ ôóíêöèÿ. |
Ôóíêöèÿ. Ëèíåéíûå ôóíêöèè. | |
Åñëè ïåðåìåííûå õ, ó âûðàæàþòñÿ ïîñðåäñòâîì óðàâíåíèÿ Àõ + By = Ñ , ïðè ýòîì ÷èñëà À,  èëè ïî ìåíüøåé ìåðå îäíî èç íèõ, íå ðàâíî íóëþ, òî ãðàôèêîì ôóíêöèîíàëüíîé çàâèñèìîñòè ÿâëÿåòñÿ ïðÿìàÿ ëèíèÿ . | |
Ôóíêöèÿ. Ëèíåéíûå ôóíêöèè. |
Источник