Растяжение графика функции от оси ординат

Список функций, изученных в 7 и 8 классе

Функция

Формула

График

Раздел справочника

Прямая пропорциональность

y = kx

Прямая

7 кл., §37

Линейная функция

y = kx+b

Прямая

7 кл., §38-39

Обратная пропорциональность

$ y = frac{k}{x} $

Гипербола

8 кл., §6

Квадрат числа

$ y=x^2$

Парабола

8 кл., §18

Квадратный трёхчлен

$ y = ax^2+bc+c$

Парабола

8 кл., §28-29

Квадратный корень

$ y = sqrt{x}$

Парабола

8 кл., §22

Растяжение и сжатие графика по оси OX

Сравним графики пар функций, которые в общем виде можно записать так:

$$ y_1 = f(x), y_2 = f(px) $$

где $p gt 1$, произвольный положительный множитель.

Пусть p = 2.

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = f(2x) = (2x)^2 = 4x^2 $

$y_2 = y_1 при x_2 = frac{1}{2} x_1$

График сжимается в 2 раза по оси OX

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = f(2x) = frac{4}{(2x)} = frac{2}{x}$

$ y_2 = y_1 при x_2 = frac{1}{2} x_1 $

График сжимается в 2 раза по оси OX

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = f(2x) = sqrt{2x}$

$y_2=y_1 при x_2 = frac{1}{2} x_1$

График сжимается в 2 раза по оси OX

Квадратный корень

Теперь сравним пары функций с делением на p:

$$ y_1 = f(x), quad y_2 = f left( frac{x}{p} right), quad p gt 1 $$

Пусть p = 2

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = f left(frac{x}{2}right) = left(frac{x}{2}right)^2 = frac{x^2}{4} $

$y_2 = y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = f left(frac{x}{2}right) = frac{4}{x/2} = frac{8}{x}$

$ y_2 = y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = f left(frac{x}{2}right) = sqrt{frac{x}{2}}$

$y_2=y_1 при x_2 = 2x_1$

График растягивается в 2 раза по оси OX

Квадратный корень

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = f(px), quad p gt 1 $$

график второй функции сжимается в p раз по оси OX по сравнению с графиком первой функции.

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = f Biggl(frac{x}{p}Biggr), quad p gt 1 $$

график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.

Заметим, что данные утверждения справедливы не только для рассмотренных функций, но и для любых других (синусов, косинусов, логарифмов и т.п.)

Растяжение и сжатие графика по оси OY

Сравним графики пар функций, которые в общем виде можно записать так:

$$ y_1 = f(x), quad y_2 = Af(x) $$

где $A gt 1$, произвольный положительный множитель.

Пусть A = 2.

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = 2f(x) = 2x^2 $

$y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = 2f(x) = frac{8}{x}$

$ y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = 2f(x) = 2sqrt{x}$

$y_2 = 2y_1 при x_2 = x_1$

График растягивается в 2 раза по оси OY

Квадратный корень

Теперь сравним пары функций с делением на A:

$$ y_1 = f(x), quad y_2 = frac{1}{A} f(x), quad A gt 1 $$

Пусть A = 2

Парабола:

$y_1 = f(x) = x^2$

$ y_2 = frac{1}{2}f(x) = frac{x^2}{2}$

$y_2 = frac{1}{2}y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

Парабола

Гипербола:

$ y_1 = f(x) = frac{4}{x}$

$y_2 = frac{1}{2}f(x) = frac{2}{x}$

$ y_2 = frac{1}{2}y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

Гипербола

Квадратный корень:

$y_1 = f(x) = sqrt{x}$

$y_2 = frac{1}{2}f(x) = frac{sqrt{x}}{2}$

$y_2 = frac{1}{2}y_1 при x_2 = x_1$

График сжимается в 2 раза по оси OY

Квадратный корень

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = Af(x), quad A gt 1 $$

график второй функции растягивается в A раз по оси OY по сравнению с графиком первой функции.

При сравнении графиков двух функций

$$ y_1 = f(x), quad y_2 = frac{1}{A} f(x), quad A gt 1 $$

график второй функции сжимается в A раз по оси OY по сравнению с графиком первой функции.

Заметим, что данные утверждения справедливы не только для рассмотренных функций, но и для любых других (синусов, косинусов, логарифмов и т.п.)

Примеры

Пример 1. Постройте в одной координатной плоскости графики функций:

$$ y = sqrt{x}, y = sqrt{3x}, y = sqrt{frac{x}{3}}, y = 3sqrt{x} $$

Сделайте выводы.

Пример 1.

По сравнению с графиком $y = sqrt{x}$:

  • график функции $y = sqrt{3x}$ сжимается в 3 раза по оси OX(←)
  • график функции $y = sqrt{frac{x}{3}}$ растягивается в 3 раза по оси OX(→)
  • график функции $y = 3sqrt{x}$ растягивается в 3 раза по оси OY(↑)

Пример 2*. Постройте в одной координатной плоскости графики функций:

$$ y = f(x), y = f(2x), y = f Biggl(frac{x}{2}Biggr), y = 2f(x) $$

где $f(x) = x^2+3x+2$

Сделайте выводы.

Исходная функция $y = f(x) = x^2+3x+2$

Остальные функции

$$ y = f(2x) = (2x)^2+3 cdot (2x)+2 = 4x^2+6x+2 $$

$$ y = fBiggl(frac{x}{2}Biggr) = Biggl(frac{x}{2}Biggr)^2+3 cdot Biggl(frac{x}{2}Biggr) +2 = frac{x^2}{4}+ frac{3}{2} x+2 $$

$$ y = 2f(x) = 2x^2+6x+4 $$

Получаем:

Пример 2*.

По сравнению с графиком $y = f(x) = x^2+3x+2$:

  • график функции y = f(2x) сжимается в 2 раза по оси OX(→)
  • график функции $y = f left(frac{x}{2}right)$ растягивается в 2 раза по оси OX(←)
  • график функции y = 2f(x) растягивается в 2 раза по оси OY(↑)

Растяжение графика функции от оси ординат

Рейтинг пользователей

  • Растяжение графика функции от оси ординат

    80

    Ilay_YouTube

  • Георгий Федозов

    70

    Георгий Федозов

  • Настя Вяземская

    60

    Настя Вяземская

  • Растяжение графика функции от оси ординат

    50

    fubers

  • Растяжение графика функции от оси ординат

    50

    taty20

Источник

ЦЕЛИ: 1) рассмотреть графики функций y=f(x), y=kf(x),
y=f(x)+n, y=f(x-m) и y=f(x-m)+n и их свойства, используя ПК и
программу Advanced Grapher;

2)расширить представления о преобразованиях
графиков более сложных функций;

3)способствовать развитию у учащихся навыков
чтения графиков и построения графиков функций.

I. Новый материал – объяснительная лекция.

Графики функций широко используются в
различных областях инженерных знаний, поэтому
умение строить, “читать”, прогнозировать их
“поведение” имеют огромную роль в практической
деятельности инженерных работников, гидро,
метеорологов и людей других “математических”
специальностей.

Читайте также:  Растяжение связки плечевого сустава симптомы

Выясним, какая связь существует между
графиками функций y = f(x) и y = kf(x), где k-число, не
равное нулю.

Пусть графиком функции y = f(x), область
определения которой- промежуток[-2;4],является
кривая, изображённая на рис.1а f(x) =
x(x-3)(x+1).

Рассмотрим сначала случай, когда k>1.Построим
график функции y = kf(x), где k=2. Для этого расстояние
каждой точки графика функций y = f(x) от оси X
увеличим в 2раза, т.е.умножим её ординату на 2.
Построение выполним с помощью программы Advanced
Grapher, набрав формулу функции F1 с клавиатуры.
Заметим, что точки с абсциссами 0; 3; -1,
принадлежащие оси Х, останутся на месте, т.к.их
ординаты равны нулю (0*2х = 0).Все остальные точки
графиков у1, и у, имеющие одинаковые
абсциссы, будут лежать соответственно на
перпендикулярах к оси Х, причём каждая точка
графика функции у= 2f(x)
будет находиться от оси Х на расстоянии в 2 раза
большем, чем соответственная точка графика
функции y = f(x). (рис. 1б).

Рассмотрим теперь случай, когда О < k < 1,
например k =, и
построим график функции y= kf (x), при k = , используя программу Advanced Grapher.

Опять же заметим, что точки с абсциссами -1; 0 и 3,
принадлежащие оси Х, останутся на месте ( 0* = 0 ), а каждая точка
графика функции y= f (x), будет
находиться от оси Х на расстоянии в 2 раза
меньшем, чем соответственная точка графика
функции y = f(x) (рис.1в).

Делаем вывод о том, что график функции y = f(x) при k
< 1 можно получить из графика функции y = f(x)
растяжением от оси Х исходного графика в k раз, а
при О < k < 1- сжатием к оси Х графика функции y =
f(x) в раз.

И рассмотрим случай, когда k< 0. Ограничимся
значением k = -1, т.е. выясним, как можно построить
график функции y= -f(x),
зная график функции y = f(x).

Задав с клавиатуры формулу графика y = -f(x) и
получив соответствующее изображение на экране (рис. 1г), заметим, что каждой точке
графика y, кроме точек с
абсциссами -1; 0 и 3, соответствует точка графика y =
f(x) с противоположной ординатой.

Соответственно делаем вывод, что график
функции y = -f(x) можно получить с помощью симметрии
относительно оси Х.

Аналогично, графики функций y = kf(x) и y = -kf(x) при
любом k0 симметричны
относительно оси Х.

Иначе говоря, чтобы построить график функции y =
kf(x), где k < 0, можно сначала построить график
функции y = -kf(x), где -k > 0, а затем отобразить его
симметрично относительно оси Х.

Выясним, как связаны между собой графики
функций y = f(x) и y = f(x)+n, где n –произвольное число.

Рассмотрим графики функций y = x, y = x — 4 , y= x-4, y = x+ , y= x- (рис. 2).

Рассматривать будем попарно графики функций у
и у(рис.2а),
у и y(рис.2б),
у и y(рис.2в),
у и y(рис.2г).

Моментальное построение графика каждой из выше
указанных функций даст возможность сделать
вывод, что график функции y = f(x) + n можно получить
из графика функции y = f(x) с помощью сдвига вдоль
оси Y на n единиц вверх, если n>0, или на единиц вниз, если
n<0.

Выясним теперь, как связаны между собой графики
функций y = f(x) и y = f(x-m), где m – произвольное число.

Рассмотрим графики функций y = (x-3), y = (x+2), y = (x), y = (x+).

Получаем рис.3 и делаем вывод, что
график функции y = f(x) можно получить с помощью
сдвига вдоль оси Х на m единиц вправо, если m>0,
или на единиц
влево, если m<0.

Из курса алгебры VII класса известно, что график
функции y = x (парабола)
симметричен относительно ось У. Точку
пересечения параболы с осью симметрии называют
вершиной параболы.

Построим, используя программу Advanced Grapher, в одной
системе координат графики функций y = x, у== x+2, y= (х-3) и y= (х-3) +2 ( рис.4).

Учащимся наглядно видно, что у параболы у== x+2 осью симметрии является ось У, а у
параболы y= (х-3) — прямая х = 3. Графиком же
функции y= (х-3) +2 является парабола с
вершиной в точке (3;2) и осью симметрии её является
прямая х = 3.

Из наглядного наблюдения учащиеся видят, что
при построении графика функции у = (х-3) +2 нужно последовательно
выполнить два параллельных переноса: один в
направлении оси У на 2 единицы вверх, а другой в
направлении оси Х на 3 единицы вправо.

Делаем вывод, что графиком функции вида у = (х-m) +n является парабола с
вершиной в точке А(m;n) .А также обобщаем выше
рассмотренные преобразования графиков и делаем
вывод, что график функции y = f(x-m)+n может быть
получен из графика функции y=f(x) в результате
последовательно выполненных двух параллельных
переносов: сдвига вдоль оси Х на m единиц и сдвига
графика функции у = (х-m)
вдоль оси У на n единиц.

II. Закрепление

.

У: Изобразите на координатной плоскости
заданные точки и определите, используя обороты
“выше на…” и “ниже…”, взаимное расположение
соответствующих точек:

а) А(-1;7) и А1(-1;10) б) В(2;7) и В1(2;5) в) С (0;-6)
и С1(0;-5) г) Д (3;-4) и Д1(3;-7) .

У: Как найти расстояние между точками, имеющими
одинаковые ординаты? Закончите предложение:
“Если точки имеют одинаковые ординаты, то
расстояние между ними равно…”

Читайте также:  Справка о растяжении связок

Обучающая исследовательская работа.
(карточки-распечатки см. Приложение 1)

I вариант.

1. Заданы функции y = f(x) и y = f(x) + 2. заполните таблицу значений этих
функций и сделайте вывод о взаимном расположении
точек данных функций и их графиков:

X

1

2

4

6

7

y=f(x)

5

7

-5

  

y=f(x)+2

   

3

-11

Д: Любая точка графика y = f(x)+2 с абсциссой X находится на 2 единицы
“выше”, чем точка графика y = f(x) с той же самой
абсциссой; а график функции y = f(x)+2 можно получить из графика y = f(x)
параллельным переносом вдоль оси ординат на 2
единицы “вверх”.

II вариант.

1. Заданы функции y = f(x) и y = f(x) – 3. заполните
таблицу значений этих функций и сделайте вывод о
взаимном расположении точек данных функций и их
графиков:

X

1

3

5

9

y=f(x)

4

-6

5

  

y=f(x)-3

   

-3

Д: Любая точка графика y = f(x)-3 с абсциссой X находится на 3 единицы
“ниже”, чем точка графика y = f(x) с той же самой
абсциссой; а график функции y=f(x)-3 можно получить из графика y = f(x)
параллельным переносом вдоль оси ординат на 3
единицы “вниз”.

У: С помощью какого преобразования можно
получить график функции y = f(x)+a, а0 из графика функции y = f(x).

Д: Обобщённый вывод (записать в тетрадь): График
функции y1= f(x)+a, а0 можно получить из графика функции y = f(x)
параллельным переносом вдоль оси ординат на единиц “вниз”,
если а<0, и на
единиц “вверх”, если а>0.

У: Пусть даны графики функций y = f(x) и y = f(x)+7. Известно, что один из
них проходит через начало координат. Определите
точку пересечения другого графика с осью
ординат.

Д: A (0;7) или А (0;-7).

У: Пусть даны графики функций y = f(x) и y = f(x)+c. Известно, что один из
них проходит через точку А(-11;231) и другой через
точку А (-11;132). Найдите
все возможные значения С.

Д: 99 или -99.

I вариант.

2. Постройте графики функций, используя
известный график y = kx:

a) y = x-4 ; б) у = x+1;
в) у = 2 x-1.

3.

II вариант.

2. Постройте графики функций, используя
известный график y = kx:

а) у = -x+3; б) у = -0,5x+2; в) у = -2x-3.

3.

У: Изобразите на координатной плоскости
заданные точки и определите, используя обороты
“левее на …” и “правее на …” взаимное
расположение следующих точек:

а) А (-1;7) и А (6;7) б) С (8;-6)
и С (14;-6) в) В (2;3) и В (-2;3) г) Д (-13;_4) и Д (-3;-4).

У: Как найти расстояние между точками, имеющими
одинаковые абсциссы? Закончите предложение:
“Если точки имеют одинаковые абсциссы, то
расстояние между ними равно…”

I, II вариант.

4. Заданы функции y=f(x), y=
f(x+2) и y= f(x-3). Заполните
таблицу значений этих функций:

У: Как взаимно расположены точки графиков
функций y = f(x) и y = f(x+2)?

Каким образом можно получить график функции y= f(x+2) из графика функции y =
f(x)?

Д: Любая точка графика y=
f(x+2) с абсциссой х-2
находится на 2 единицы “левее”, чем точка
графика y=f(x) с абсциссой х, а график функции y= f(x+2) можно получить из графика y = f(x),
“сдвинув” его на 2 единицы влево вдоль оси
абсцисс.

У: Как взаимно расположены точки графиков
функций y = f(x) и y= f(x-3)?

Каким образом можно получить график функции y= f(x-3) из графика функции y =
f(x)?

Д: Любая точка графика y= f(x-3) с абсциссой х+3
находится на 3 единицы “правее”, чем точка
графика y = f(x) с абсциссой х, а график функции y= f(x-3) можно получить из графика функции y =
f(x) “сдвинув” его на 3 единицы вправо вдоль оси
абсцисс.

У: Попытайтесь сделать вывод о том как можно
получить график функции y= f(x+а) из графика функции y = f(x)?

Д: График функции y=
f(x+а) можно получить из графика функции y = f(x),
“сдвинув” его на единиц вправо вдоль оси абсцисс, если
а<0, и на
единиц влево вдоль оси абсцисс, если а>0.

У: Пусть даны графики функций y = f(x) и y= f(x+7). Известно, что один из
них проходит через начало координат. Какую точку
пересечения графика с осью абсцисс можно указать
наверняка?

Д: А(-7;0) и А (7;0).

У: Опишите как расположены относительно друг
друга графики функций (задания 5-9 выполнены на
карточках-распечатках, ответы в устной форме):

5. y = f(x-2) и y = f(x+7).

6. y = f(2x) и y = f(2x-4).

7. y = f(2x) и y = f(2x+1).

8. y = f(0,5x) и y = f(0,5x-4).

9. y = f() и . y = f(-1).

III . Лабораторно-исследовательская работа.

(все задания выполнены на
карточках-распечатках, ответы см. в приложении
2)

I вариант.

10. Постройте графики функций, используя
программу Advanced Grapher :

а) у = (x-4). б) у = (x+2).

11. Пусть дан график функции y=f(x). Как получить
график функции y = f(x+3)-4?

12. Постройте графики функций, используя
программу Advanced Grapher:

а) у = -4; б) у =
(x+3)-4.

II вариант.

10. Постройте графики функций, используя
программу Advanced Grapher :

а) у = 2(x-1), б) у = -(x+3).

11. Пусть дан график функции y=f(x). Как получить
график функции y = f(x-5)+2?

12. Постройте графики функций, используя
программу Advanced Grapher:

а) у =+2; б) у =(x-5)+2.

III вариант.

10. Постройте графики функций, используя
программу Advanced Grapher :

а) у = -0,5(x-4); б) у = (2x-3).

11. Пусть дан график функции y = f(x). Как получить
график функции y = f(x+1)+3?

Читайте также:  Снять отек при растяжении связок

12. Постройте графики функций, используя
программу Advanced Grapher:

а) у =+3; б) у =
(x+1)+3.

IV вариант.

10. Постройте графики функций, используя
программу Advanced Grapher :

а) у = 4x+4х+1; б) у = —х-1.

11. Пусть дан график функции y=f(x). Как получить
график функции y = f(x-2)-1?

12. Постройте графики функций, используя
программу Advanced Grapher:

а) у =-1; б) у =
(x-2)-1.

Источник

3.1 Сжатие (растяжение) графика вдоль оси ординат

Рассмотрим
функцию вида y=AРастяжение графика функции от оси ординат,
где A>0.
Нетрудно заметить, что при равных
значениях аргумента ординаты графика
этой функции будут в A
раз больше ординат графика функции
y=f(x)
при A>1
или в
Растяжение графика функции от оси ординатраз меньше ординат графика функцииy=f(x)
при A<1.
Таким образом, получаем следующее
правило.

Для
построения графика функции y=AРастяжение графика функции от оси ординат
следует построить график функции y=f(x)
и увеличить его ординаты в A
раз при A>1
(произвести растяжение графика вдоль
оси ординат) или уменьшить его ординаты
в
Растяжение графика функции от оси ординатраз приA<1
(произвести сжатие графика вдоль оси
ординат). Полученный график является
графиком функции y=AРастяжение графика функции от оси ординат.

Пример
13.
Построить
график функции y=2cos
x.

Р
е ш е н и е: Строим график функции y=cos
x
(рис.16 – пунктирная кривая) и растяжением
этого графика вдоль оси ординат в 2
раза получаем график функции y=2cos
x
(сплошная кривая).

Пример
14.
Построить
график функции y=Растяжение графика функции от оси ординатx2.

Р
е ш е н и е: Строим график функции y=x2
и сжатием этого графика в 3 раза вдоль
оси ординат получаем график функции
y=Растяжение графика функции от оси ординатx2
(рис.17).

Растяжение графика функции от оси ординатРастяжение графика функции от оси ординат

Рис.16

Рис.17

3.2. Сжатие (растяжение) графика вдоль оси абсцисс

Пусть
требуется построить график функции
y=f(x),
где >0.
Рассмотрим функцию y=f(x),
которая в произвольной точке x=x1
принимает значение y1=f(x1).

Очевидно,
что функция y=f(x)
принимает такое же значение в точке
x=x2,
координата

кРастяжение графика функции от оси ординатоторой
определяется равенствомx1=x2,
или x2=Растяжение графика функции от оси ординат,
причём это равенство справедливо для
совокупности всех значений x
из области определения функции.
Следовательно, график функции y=f(x)
оказывается сжатым (при >1)
или растянутым (при <1)
вдоль оси абсцисс относительно графика
функции y=f(x).
Таким образом, получаем следующее
правило.

Для
построения графика функции y=f(x)
следует построить график функции y=f(x)
и уменьшить его абсциссы в 
раз при >1
(произвести сжатие графика вдоль оси
абсцисс) или увеличить его абсциссы в
Растяжение графика функции от оси ординатраз при<1
(произвести растяжение графика вдоль
оси абсцисс). Полученный график является
графиком функции y=f(x).

П

Рис. 18

ример 15.Построить
график функции
Растяжение графика функции от оси ординатx.

РРастяжение графика функции от оси ординате ш е н и е: Строим график функции
Растяжение графика функции от оси ординатx
(рис.18 – пунктирная кривая), и проводя
его сжатие в 
раз вдоль оси абсцисс, получаем график
функции
Растяжение графика функции от оси ординатx
(сплошная кривая). Период этой функции
уже равен не 2,
а
Растяжение графика функции от оси ординат=2.
График пересекает ось абсцисс в точкахx=0,Растяжение графика функции от оси ординат
.

Пример
16.
Построить
график функции
Растяжение графика функции от оси ординат.

Р
е ш е н и е: Строим график функции
Растяжение графика функции от оси ординати, растянув его вдоль оси абсцисс в 3
раза, получаем график функцииРастяжение графика функции от оси ординат.

4. Комбинация переноса, отражения и деформации

Рис.
19

Очень часто при построении графиков
функций применяют композицию приёмов,
изложенных в пунктах 1-3. Последовательное
применение ряда таких приёмов позволяет
существенно упростить построение
графика исходной функции и нередко
свести его в конце концов к построению
одной из простейших элементарных
функций.

Рассмотрим,
как с учётом изложенного следует,
например, построить
график функции вида
y=Af(x+a)+b.
Запишем
исходную функцию в виде y=Af
[ 
( x+Растяжение графика функции от оси ординат
) ] +b
и схему поэтапного её упрощения
(последовательность преобразований):

1Растяжение графика функции от оси ординатРастяжение графика функции от оси ординатРастяжение графика функции от оси ординат.y=Af
[ 
( x+Растяжение графика функции от оси ординат
) ] + b
; перенос оси абсцисс на b
единиц;

2Растяжение графика функции от оси ординатРастяжение графика функции от оси ординатРастяжение графика функции от оси ординат.y=Af
[ 
( x+Растяжение графика функции от оси ординат
) ]; перенос оси ординат на
Растяжение графика функции от оси ординат
единиц;

3. y=Af
[ 
x
]; отражение графика относительно оси
абсцисс

(Растяжение графика функции от оси ординатэтап
выполняется только приA<0);

4Растяжение графика функции от оси ординат.y=A·
f
(x); сжатие
или растяжение графика

вдоль оси ординат;

5. y=f
(x) отражение
графика относительно оси ординат

(Растяжение графика функции от оси ординатэтап
выполняется только при<0);

6Растяжение графика функции от оси ординат.y=f
(
x); сжатие
или растяжение вдоль оси абсцисс;

7. y=f
( x);

Проводя
построение графика шаг за шагом в
порядке, обратном порядку упрощения
вида функции с учётом всех указанных
правил, получим график исходной функции.

Пример 17. Построить
график функции y=Растяжение графика функции от оси ординат.

РРастяжение графика функции от оси ординатРастяжение графика функции от оси ординате ш е н и е: Схема построения графика :

      1. yРастяжение графика функции от оси ординатРастяжение графика функции от оси ординат=Растяжение графика функции от оси ординат

      2. xРастяжение графика функции от оси ординат0,
        y=Растяжение графика функции от оси ординат;

      3. y=Растяжение графика функции от оси ординат;

      4. у=Растяжение графика функции от оси ординат;

      5. y=Растяжение графика функции от оси ординат;

Итак,
построение графика исходной функции
следует начинать с построения графика
функции y=Растяжение графика функции от оси ординат.
График (рис.20) пересекает ось ординат
в точкеРастяжение графика функции от оси ординат(из условияx=0),
а ось абсцисс в точках x=1
(из условия y=0,
т.е.Растяжение графика функции от оси ординат=0).

Растяжение графика функции от оси ординатВ
заключении отметим, что порядок упрощения
целесообразно проводить в следующей
последовательности.

  1. Использование
    чётности или нечётности функции.

  2. Перенос осей.

  3. Отражение и
    деформация.

Построение
же графика, как обычно, выполняется в
обратной последовательности.

Рис.20

Задание для
самостоятельного выполнения

Ниже
приводятся тексты заданий для
самостоятельного выполнения. Вам
необходимо построить графики функций,
оформить работу отдельно от решений по
другим предметам и выслать в адрес
Хабаровской краевой заочной
физико-математической школы.

М.11.2.1 С
помощью элементарных преобразований
постройте графики следующих функций:

  1. y=x2-2;

  2. y=(x+1)2;

  3. y=sinРастяжение графика функции от оси ординатx;

  4. y=-
    3sin x;

  5. y=tgРастяжение графика функции от оси ординат;

М.11.2.2.
Написать последовательность преобразований
и построить графики следующих функций:

  1. y=Растяжение графика функции от оси ординат;

  2. y=(x-1)3+2;

  3. y=ln
    (1-x);

  4. y=tg(-Растяжение графика функции от оси ординат);

  5. y=Растяжение графика функции от оси ординатcos(2x-1)-2.

Хабаровская краевая заочная
физико-математическая школа

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник