Расчеты на прочность и жесткость при растяжении сжатии кручении и изгибе

Расчеты на прочность и жесткость при растяжении сжатии кручении и изгибе thumbnail

Эта статья будет посвящена расчетам на прочность, которые выполняются в сопромате и не только. Расчеты на прочность бывают двух видов: проверочные и проектировочные (проектные).

Проверочные расчеты на прочность – это такие расчеты, в ходе которых проверятся прочность элемента заданной формы и размеров, под некоторой нагрузкой.

В ходе проектировочных расчетов на прочность определяются какие-то размеры элемента из условия прочности. Причем, очевидно, что для разных видов деформаций эти условия прочности различны. Также к проектным расчетам можно отнести расчеты на грузоподъемность, когда вычисляется максимальная нагрузка, которую может выдерживать конструкция, не разрушаясь.  Рассмотрим более подробно, как проводится прочностные расчеты для разных случаев.

Расчеты на прочность при растяжении (сжатии)

Начнем, пожалуй, с самого простого вида деформации растяжения (сжатия). Напряжение при центральном растяжении (сжатии) можно получить, разделив продольную силу на площадь поперечного сечения, а условие прочности выглядит вот так:

uslovie-prochnosti-pri-rastyazhenii-szhatii

где сигма в квадратных скобках – это допустимое напряжение. Которое можно получить, разделив предельное напряжения на коэффициент запаса прочности:

dopustimoe-napryazhenie

Причем, за предельное напряжение для разных материалов принимают разное значение. Для пластичных материалов, например, для малоуглеродистой стали (Ст2, Ст3) принимают предел текучести, а для хрупких (бетон, чугун) берут в качестве предельного напряжения – предел прочности (временное сопротивление). Эти характеристики получают при испытании образцов на растяжение или сжатие на специальных машинах, которые фиксируют характеристики в виде диаграммы.

dlya-plastichnyih-i-dlya-hrupkih

Коэффициент запаса прочности выбирается конструктором исходя из своего личного опыта, назначения проектируемой детали и сферы применения. Обычно, он варьируется от 2 до 6.

В случае если необходимо подобрать размеры сечения, площадь выражают таким образом:

ploshhad

Таким образом, минимальная площадь поперечного сечения при центральном растяжении (сжатии) будет равна отношению продольно силы к допустимому напряжению.

Расчеты на прочность при кручении

При кручении расчеты на прочность в принципе схожи с теми, что проводятся при растяжении. Только здесь вместо нормальных напряжений появляются касательные напряжения.

На кручение работают, чаще всего, детали, которые называются валами. Их назначение заключается в передаче крутящего момента от одного элемента к другому. При этом вал по всей длине имеет круглое поперечное сечение. Условие прочности для круглого поперечного сечения можно записать  так:

uslovie-prochnosti-pri-kruchnii

где Ip — полярный момент сопротивления, ρ — радиус круга. Причем по этой формуле можно определить касательное напряжение в любой точке сечения, варьируя значение ρ. Касательные напряжения распределены неравномерно по сечению, их максимальное значение находится в наиболее удаленных точках сечения:

raspredelenie-kasatelnyih-napryazheniy

Условие прочности, можно записать несколько проще, используя такую геометрическую характеристику как момент сопротивления:

uslovie-prochnosti

То бишь максимальные касательные напряжения равны отношению крутящего момента к полярному моменту сопротивления и должны быть меньше либо равны допустимому напряжению. Геометрические характеристики для круга, упомянутые выше можно найти вот так:

geometricheskie-xarakteristiki

Иногда в задачах встречаются и прямоугольные сечения, для которых момент сопротивления определяется несколько сложнее, но об этом я расскажу в другой статье.

Расчеты на прочность при изгибе

Источник

Основной задачей расчета конструкции является обеспечение ее безопасной эксплуатации. Важнейшим условием, обеспечивающим безопасную эксплуатацию конструкции, является условие прочности. Существуют различные методы обеспечения прочности конструкций. Мы чаще всего будем пользоваться одним из этих методов – расчетом по допускаемым напряжениям. Согласно этому методу для конструкций, работающих на растяжение-сжатие, условие прочности, составленное для опасного сечения, можно записать в таком виде:

(2.26)

где – максимальное напряжение в конструкции; – характеристика материала, называемая допускаемым напряжением.

Допускаемое напряжение находится по формуле

. (2.27)

где – предельное напряжение, при достижении которого в стержне наступает предельное состояние материала: появляются пластические деформации, если материал стержня – пластичный, или происходит разрушение, если стержень выполнен из хрупкого материала; n – нормируемый коэффициент запаса прочности.

Кроме формулы (2.26), возможен второй вариант условия прочности

, (2.28)

где (2.29)

называется действительным коэффициентом запаса прочности, показывающим во сколько раз надо увеличить максимальное напряжение в стержне, чтобы материал стержня оказался в опасном (предельном) состоянии.

Условие прочности в зависимости от цели поставленной задачи позволяет выполнять расчеты на прочность двух видов: проектный и проверочный. Для спроектированного стержня можно также определять допускаемую нагрузку.

Проектный расчет выполняют с целью определения размеров поперечных сечений элемента конструкции при известных рабочих нагрузках и материале (допускаемых напряжений). Площадь поперечного сечения определяют из выражения

. (2.30)

Форма сечения стержня не влияет на его прочность при растяжении (сжатии). Форму сечения стержня необходимо знать только для определения размеров сечения при известном значении площади.

Зная площадь сечения и его форму, находят размеры сечения.

Проверочный расчет выполняют для спроектированной конструкции с целью проверки ее прочности. При проверочном расчете должны быть известны площадь опасного сечения, нагрузка и материал (допускаемое напряжение). Проверочный расчет выполняют по формуле (2.26).

Определение допускаемой нагрузки для спроектированного элемента конструкции, размеры поперечного сечения которого и материал (допускаемые напряжения) известны. Условие прочности в этом случае записывают в виде

. (2.31)

Зная значение , определяют допускаемую нагрузку .

Так как допускаемые напряжения не имеют точного значения, а выбираются приближенно, то при проверочном расчете максимальные рабочие напряжения могут превышать допускаемые на 5%. По этой же причине можно округлять полученные в расчетах значения площади опасного поперечного сечения или допускаемой нагрузки так, чтобы максимальные напряжения отличались от допускаемых не более чем на 5%. По этой же причине можно округлять полученные в расчетах значения площади опасного поперечного сечения или допускаемой нагрузки та, чтобы максимальные напряжения отличались от допускаемых не более чем на 5%.

При проектировании элементов конструкций стремятся сделать их во всех сечениях равнопрочными.

Рассмотренные три вида расчетов на прочность можно выполнять не только при растяжении или сжатии, а при любом виде деформации (сдвиге, кручении, изгибе).

При проектировании строительных конструкций расчет на прочность стальных элементов, подверженных центральному растяжению или сжатию, следует выполнять по формуле

(2.32)

где – коэффициент условий работы, принимаемый по СНИП (см. табл.2.1) или другим нормам.

Таблица 2.1

Элементы конструкции
Колонны общественных зданий и опор водонапорных башен
Элементы стержневых конструкций покрытий и перекрытий:
а) сжатых при расчетах на устойчивость
б) растянутых в сварных конструкциях
Сплошные составные балки, колонны, несущие статическую нагрузку и выполненные с помощью болтовых соединений, при расчетах на прочность
Сечения прокатных и сварных элементов, несущих статическую нагрузку, при расчетах на прочность
Сжатые элементы из одиночных уголков, прикрепляемые одной полкой
 
0,95
 
 
0,95
0,95
 
 
1,1
 
1,1
 
0,75
Читайте также:  Как снять отек на руке после растяжения связок

Примечание: В случаях, не оговоренных в настоящих нормах, в формулах следует

принимать .

Для хрупких строительных материалов условия прочности принимают вид:

при растяжении: , ;

при сжатии: , (2.33)

где и – допускаемые напряжения при растяжении и сжатии; nt и nc – нормативные коэффициенты запаса прочности по отношению к пределу прочности (nt, nc>1).

Для центрально сжатых бетонных элементов формула (2.33) записывается в виде:

(2.34)

где – коэффициент, принимаемый для бетона тяжелого, мелкозернистого и легкого равным 1,00; для ячеистого автоклавного – 0,85; для ячеистого неавтоклавного – 0,75.

В некоторых случаях работоспособность элемента конструкции определяется не только его прочностью, но и жесткостью, т.е. способностью элемента воспринимать нагрузки без недопустимых упругих деформаций. При расчетах на жесткость определяют максимальные перемещения сечений и сопоставляют их с допускаемыми перемещениями.

Условие жесткости, ограничивающее изменение длины элемента, имеет сле­дующий общий вид:

,

где — изменение размеров детали;

— допускаемая величина этого изме­нения.

Учитывая, что при растяжении (сжатии) абсолютное удлинение в общем виде определяется как алгебраическая сумма величин по участкам

, (2.35)

условие жесткости при растяжении (сжатии) запишем следующим образом:

. (2.36)

Так как перемещение, согласно закону Гука, зависит от нагрузки и размеров поперечного сечения, условие жесткости позволяет решать те же три вида задач, что и условие прочности.

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Читайте также:  Условие прочности при центральном растяжении

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

При проектном расчете определяется площадь опасного сечения стержня:

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

государственное автономное учреждение

Калининградской области

профессиональная образовательная организация

Колледж сервиса и туризма

Методические рекомендации

по выполнению практических работ

«Сопротивление материалов»

по дисциплине Техническая механика

для студентов 3 курса

специальности 20.02.04 Пожарная безопасность

Калининград

УТВЕРЖДАЮ

Заместитель директора по УР ГАУ КО ПОО КСТ Н.Н. Мясникова

ОДОБРЕНО

Методическим советом ГАУ КО ПОО КСТ

РАССМОТРЕНО

На заседании ПЦК технологических дисциплин

Редакционная коллегия:

Колганова А.А., методист

Фалалеева А.Б., преподаватель русского языка и литературы

Цветаева Л.В.., председатель ПЦК общематематических и естественнонаучных дисциплин

Составитель:

Незванова И.В. преподаватель ГАУ КО ПОО КСТ

Содержание

Практическое занятие 6: Расчёты на прочность и жёсткость при растяжении и сжатии

4

Практическая работа 7: Геометрические характеристики плоских сечений

9

Практическая работа 8: Кручение. Расчёты на прочность и жесткость при кручении

11

Практическая работа 9: Расчёты на прочность при изгибе

14

Практическая работа 10: Расчёты бруса круглого поперечного сечения при сочетании основных деформаций.

17

Приложение

19

Список литературы

23

Практическое занятие 6

Расчёты на прочность и жёсткость при растяжении и сжатии

Необходимые формулы

Нормально напряжение

где N- продольная сила; А- площадь поперечного сечения.

Удлинение (укорочение) бруса

Е-модуль упругости; l- начальная длина стержня.

Допускаемое напряжение

[s]-допускаемые запасы прочности.

Условие прочности при растяжении и сжатии:

Примеры расчётов на прочность и сжатие

Пример 1: Груз закреплён на стержнях и находится в равновесии (рисунок 6.1). Материал стержней – сталь, допускаемое напряжение 160 МПа. Вес груза 100кН. Длина стержней: первого – 2м, второго – 1м. Определить размеры поперечного сечения и удлинение стержней. Форма поперечного сечения – круг.

Рисунок 6.1

Решение:

1. Определить нагрузку на стержни. Рассмотрим равновесие точки В, определим реакции стержней. По пятой аксиоме статики (закон действия и противодействия) реакция стержня численно равна нагрузке на стержень.

Наносим реакции связей, действующих в точке В. Освобождаем точку В от связей. (рисунок 6.1)

Выбираем систему координат так, чтобы одна из осей координат совпадала с неизвестной силой. (рисунок 6.1. б)

Составим систему уравнений равновесия для точки В:

Решим систему уравнений и определяем реакции стержней.

Направление реакций выбрано верно. Оба стержня сжаты. Нагрузки на стержни: F1=57,4kH; F2=115,5kH.

2. Определяем потребную площадь поперечного сечения стержней из условий прочности.

Условие прочности на сжатие:

откуда

Стержень 1 (N1=F1)

Для круга

Стержень 2 (N2=F2)

Полученные диаметры округляем: d1=25мм, d2=32мм.

3. Определяем удлинение стержней

Укорочение стержня 1:

Укорочение стержня 2:

Пример 2: Однородная жесткая плита с силой тяжести 10кН, нагруженная силой F=4,5кН и моментом m=3 кН*м, оперта в точке А и подвешена на стержень ВС (рисунок 6.2). Подобрать сечение стержня в виде швеллера и определить его удлинение, если длина стержня 1м, материал – сталь, предел текучести 570 МПа, запас прочности для материала 1,5.

Решение:

1. Определить усилие в стержне под действием внешних сил.

Система находится в равновессии, можно использовать уравнение равновессия для плиты:

RB – реакция стержня, реакции шарнира А не рассматриваем.

hello_html_m70f66505.png

Откуда

По третьему закону динамики реакция в стержне равна силе, действующей от стержня на плиту. Усилие в стержне равно 14 кН.

Рисунок 6.2

2. По условию прочности определяем потребную величину площади поперечного сечения:

, откуда

Допускаемое напряжение для материала стержня:

Следовательно

3. Подберём сечение стержня по ГОСТ (Приложение 1)

Минимальная площадь швелера 6,16см2

Целесообразнее оспользовать равнополочный уголок №2 (d=3мм), площадь поперечного сечения которого 1,13 см2.

4. Определить удлинение стержня

Расчётно-графическая работа

Задание 1: Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить перемещение свободного конца бруса. Двухступенчатый стальной брос нагружен силами F1, F2,F3.Площадь поперечного сечения А1 и А2.

Читайте также:  Что надо делать при растяжении мышц

Принять

Рисунок 6.3

Задание 2: Балка АВ, на которую действуют указанные нагрузки, удерживается в равновесии тягой ВС. Определить размеры поперечного сечения тяги для двух случаев: 1) сечение – круг; 2)сечение – уголок равнополочный. Принять . Собственный вес конструкции не учитывать.

hello_html_m2ceca341.png

Рисунок 6.4

Практическая работа 7

Геометрические характеристики плоских сечений

Моменты инерции простейших сечений

Прямоугольник и квадрат (Рисунок 7.1)

Осевые:

Jx-относительно оси хх

Jy-относительно оси yy

Полярный: Jp=Jx+Jy

Рисунок 7.1

Круг и кольцо (рисунок 7.2)

Осевые: — круг;

кольцо

Полярные — круг;

— кольцо.

Рисунок 7.2

Моменты инерции относительно параллельных прямых (рисунок 7.3)

,

гдеJxмомент инерции относительно оси хх;

Jx0 — момент инерции относительно оси х0х0;

Рисунок 7.3

А-площадь сечения; а- расстояние между осями.

Рекомендации для решения задач расчетно–графической работы.

1. Момент инерции сложной фигуры является суммой моментов инерции частей, на которые ее разбивают. Разбить заданную фигуру на простейшие части, для каждой определить главные центральные моменты инерции по известным формулам.

2. Моменты инерции вырезов и отверстий можно представить отрицательными величинами.

3. Заданные сечения симметричны, главные центральные оси совпадают с осями симметрии составного сечения.

4. Моменты инерции частей, чьи главные центральные оси не совпадают с главными центральными осями сечения в целом, пересчитывают с помощью формулы для моментов инерции относительно параллельных осей. Расстояние между параллельными осями определить по чертежу.

5. При выполнении задания 2 главные центральные моменты инерции отдельных стандартных профилей определить по таблицам ГОСТ (Приложение 1).

Для использованных в составных сечениях полос моменты инерции определить по известной формуле для прямоугольника.

Расчетно-графическая работа

Геометрические характеристики плоских сечений

Задание 1: Вычислить главные центральные моменты инерции сечений, представленных на схемах (рисунок 7.4). При расчётах воспользоваться данными таблицы, выбрав необходимые значения.

hello_html_41c089a2.png

Рисунок 7.4

hello_html_1fc28f37.png

Практическая работа 8

Кручение. Расчёты на прочность и жёсткость при кручении.

Основные положения расчётов при кручении

Распределение касательных напряжений по сечению при кручении (рисунок 8.1).

Касательное напряжение в точке А: hello_html_m7c3c8e2d.png

, где ρАрасстояние от точки А до центра сечения.

Условие прочности при кручении

Рисунок 8.1

Мк — крутящий момент в сечении, Н*м

Wp – момент сопротивления при кручении, м3

— допускаемое напряжение при кручении, Н/м2

Проектировочный расчёт, определение размеров поперечного сечения

Сечение-круг:

Сечение – кольцо:

где d – наружный диаметр круглого сечения;

dвн- внутренний диаметр кольцевого сечения; с= dвн/ d

Определение рационального расположения колёс на валу

Рациональное расположение колес – расположение, при котором максимальное значение крутящего момента на валу – наименьшее из возможных.

Для экономии металла сечение бруса рекомендуется выполнять кольцевым.

Условие жесткости при кручении

G – модуль упругости при сдвиге, Н/м2

E – модуль упругости при растяжении, Н/м2

– допускаемый угол закручивания,

— полярный момент инерции в сечении, м4

Проектировочный расчёт, определение наружного диаметра сечения

Рекомендации по выполнению расчетно-графической работы

1. Построить эпюру крутящих моментов по длине вала для предложенной в задании схемы.

2. Выбрать рациональное расположение колес на валу и дальнейшие расчеты проводить для вала с рационально расположенными шкивами.

3. Определить потребные диаметры вала круглого сечения из расчета на прочность и жесткость и выбрать наибольшее из полученных значений, округлив величину диаметра. 4. Сравнить затраты металла для случая круглого и кольцевого сечений. Сравнение провести по площадям поперечных сечений валов.

Площади валов рассчитать в наиболее нагруженном сечении (по максимальному крутящему моменту на эпюре моментов).

Расчетно-графическая работа

Для стального вала круглого поперечного сечения определить значения внешних моментов, соответствующих передаваемым мощностям, и уравновешенный момент.

Построить эпюру крутящих моментов по длине вала.

Рациональным расположением шкивов на валу добиться уменьшения значения максимального крутящего момента на валу.

Построить эпюру крутящих моментов для этого случая.

Дальнейшие расчеты вести для вала с рациональным расположением шкивов.

Определить диаметры вала по сечениям из расчетов на прочность и жесткость. Полученный больший результат округлить до ближайшего четного или оканчивающегося на 5 числа.

При расчете использовать следующие данные: вал вращается с угловой скоростью 25 рад/ с; материал вала — сталь, допускаемое напряжение кручения 30 МПа, модуль упругости при сдвиге 8-104 МПа; допускаемый угол закручивания = 0, 02 рад/ м.

Провести расчет для вала кольцевого сечения, приняв с = 0,9.

Сделать выводы о целесообразности выполнения вала круглого или кольцевого сечения, сравнив площади поперечных сечений.

hello_html_30725c62.png

hello_html_m52b8dc16.png

Рисунок 8.2

Практическая работа 9

Расчёты на прочность при изгибе

Основные положения и расчётные формулы при изгибе

Распределение нормальных и касательных напряжений при изгибе

где Ми – изгибающий момент в сечении;

Q-поперечная сила в сечении;

Рисунок 9.1

у – расстояние до нейтрального слоя;

Jx- осевой момент инерции сечения (рисунок 9.1)

Wx – осевой момент сопротивления сечения; А-площадь сечения

Условие прочности при изгибе

где – допускаемое напряжение

Знаки изгибающих моментов и поперечных сил (рисунок 9.2)

Рисунок 9.2

Расчётно-графическая работа

Задание 1: Для одноопорной балки, нагруженной сосредоточенными силами и парой сил с моментом m, построить эпюры поперечных сил и изгибающих моментов. Найти максимальный изгибающий момент и из условия прочности подобрать поперечное сечение для балки в виде двутавра и прямоугольника с отношением сторон h=2b. Материал – сталь, допускаемое напряжение 160 МПа. Рассчитать площади поперечных сечений и сделать вывод о целесообразности применения сечения. Для выбора профелей балок использовать приложение 1.

Рисунок 9.3

Задание 2: Для двухопорной балки, нагруженной сосредоточенными силами и парой сил с моментом, определить реакции в опорах. Найти максимальный изгибающий момент и используя условие прочности, подобрать необходимые размеры поперечных сечений. Материал – сталь, допускаемое напряжение изгиба 160 Мпа. Сечение – швелер.

Рисунок 9.4

Практическая работа 10

Расчёты бруса круглого поперечного сечения при сочетании основных деформаций.

Основные положения и расчётные формулы

Геометрические характеристики круга и кольца

Круг (рисунок 10.1)

— круг;

Рисунок 10.1

Кольцо (рисунок 10.2)

Рисунок 10.2

Моменты сопротивления:

Площади сечения

<