Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы thumbnail

Основной задачей расчета конструкции является обеспечение ее безопасной эксплуатации. Важнейшим условием, обеспечивающим безопасную эксплуатацию конструкции, является условие прочности. Существуют различные методы обеспечения прочности конструкций. Мы чаще всего будем пользоваться одним из этих методов – расчетом по допускаемым напряжениям. Согласно этому методу для конструкций, работающих на растяжение-сжатие, условие прочности, составленное для опасного сечения, можно записать в таком виде:

(2.26)

где – максимальное напряжение в конструкции; – характеристика материала, называемая допускаемым напряжением.

Допускаемое напряжение находится по формуле

. (2.27)

где – предельное напряжение, при достижении которого в стержне наступает предельное состояние материала: появляются пластические деформации, если материал стержня – пластичный, или происходит разрушение, если стержень выполнен из хрупкого материала; n – нормируемый коэффициент запаса прочности.

Кроме формулы (2.26), возможен второй вариант условия прочности

, (2.28)

где (2.29)

называется действительным коэффициентом запаса прочности, показывающим во сколько раз надо увеличить максимальное напряжение в стержне, чтобы материал стержня оказался в опасном (предельном) состоянии.

Условие прочности в зависимости от цели поставленной задачи позволяет выполнять расчеты на прочность двух видов: проектный и проверочный. Для спроектированного стержня можно также определять допускаемую нагрузку.

Проектный расчет выполняют с целью определения размеров поперечных сечений элемента конструкции при известных рабочих нагрузках и материале (допускаемых напряжений). Площадь поперечного сечения определяют из выражения

. (2.30)

Форма сечения стержня не влияет на его прочность при растяжении (сжатии). Форму сечения стержня необходимо знать только для определения размеров сечения при известном значении площади.

Зная площадь сечения и его форму, находят размеры сечения.

Проверочный расчет выполняют для спроектированной конструкции с целью проверки ее прочности. При проверочном расчете должны быть известны площадь опасного сечения, нагрузка и материал (допускаемое напряжение). Проверочный расчет выполняют по формуле (2.26).

Определение допускаемой нагрузки для спроектированного элемента конструкции, размеры поперечного сечения которого и материал (допускаемые напряжения) известны. Условие прочности в этом случае записывают в виде

. (2.31)

Зная значение , определяют допускаемую нагрузку .

Так как допускаемые напряжения не имеют точного значения, а выбираются приближенно, то при проверочном расчете максимальные рабочие напряжения могут превышать допускаемые на 5%. По этой же причине можно округлять полученные в расчетах значения площади опасного поперечного сечения или допускаемой нагрузки так, чтобы максимальные напряжения отличались от допускаемых не более чем на 5%. По этой же причине можно округлять полученные в расчетах значения площади опасного поперечного сечения или допускаемой нагрузки та, чтобы максимальные напряжения отличались от допускаемых не более чем на 5%.

При проектировании элементов конструкций стремятся сделать их во всех сечениях равнопрочными.

Рассмотренные три вида расчетов на прочность можно выполнять не только при растяжении или сжатии, а при любом виде деформации (сдвиге, кручении, изгибе).

При проектировании строительных конструкций расчет на прочность стальных элементов, подверженных центральному растяжению или сжатию, следует выполнять по формуле

(2.32)

где – коэффициент условий работы, принимаемый по СНИП (см. табл.2.1) или другим нормам.

Таблица 2.1

Элементы конструкции
Колонны общественных зданий и опор водонапорных башен
Элементы стержневых конструкций покрытий и перекрытий:
а) сжатых при расчетах на устойчивость
б) растянутых в сварных конструкциях
Сплошные составные балки, колонны, несущие статическую нагрузку и выполненные с помощью болтовых соединений, при расчетах на прочность
Сечения прокатных и сварных элементов, несущих статическую нагрузку, при расчетах на прочность
Сжатые элементы из одиночных уголков, прикрепляемые одной полкой
 
0,95
 
 
0,95
0,95
 
 
1,1
 
1,1
 
0,75

Примечание: В случаях, не оговоренных в настоящих нормах, в формулах следует

принимать .

Для хрупких строительных материалов условия прочности принимают вид:

при растяжении: , ;

при сжатии: , (2.33)

где и – допускаемые напряжения при растяжении и сжатии; nt и nc – нормативные коэффициенты запаса прочности по отношению к пределу прочности (nt, nc>1).

Для центрально сжатых бетонных элементов формула (2.33) записывается в виде:

(2.34)

где – коэффициент, принимаемый для бетона тяжелого, мелкозернистого и легкого равным 1,00; для ячеистого автоклавного – 0,85; для ячеистого неавтоклавного – 0,75.

В некоторых случаях работоспособность элемента конструкции определяется не только его прочностью, но и жесткостью, т.е. способностью элемента воспринимать нагрузки без недопустимых упругих деформаций. При расчетах на жесткость определяют максимальные перемещения сечений и сопоставляют их с допускаемыми перемещениями.

Условие жесткости, ограничивающее изменение длины элемента, имеет сле­дующий общий вид:

,

где — изменение размеров детали;

— допускаемая величина этого изме­нения.

Учитывая, что при растяжении (сжатии) абсолютное удлинение в общем виде определяется как алгебраическая сумма величин по участкам

, (2.35)

условие жесткости при растяжении (сжатии) запишем следующим образом:

. (2.36)

Так как перемещение, согласно закону Гука, зависит от нагрузки и размеров поперечного сечения, условие жесткости позволяет решать те же три вида задач, что и условие прочности.

Источник

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

Читайте также:  Что означает растяжение мышцы

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:
Анализ внутренних силовых факторов в статистически определимых системах
Ещё настоятельно рекомендую взглянуть на статью:
Расчёт статистически определимого бруса
Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

напряжения при растяжении-сжатии

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.


Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

формула напряжения

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

абсолютное удлинение

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

относительное удлинение

При растяжении продольная деформация положительна, а при сжатии – отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

закон гука

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

абсолютная поперечная деформация бруса

Соответственно, относительную поперечную деформацию определяют по формуле:

относительная поперечная деформация

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

коэффициент пуассона

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

абсолютное удлинение стержня

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость – свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

Читайте также:  Значение относительного удлинения при растяжении

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

формула допускаемые напряжения

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

Условие прочности стержня

При проектном расчете определяется площадь опасного сечения стержня:

площадь при проектном расчёте

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

допускаемая нормальная сила

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

ограничение абсолютного удлинения стержня

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:
Изгиб балки

Источник

Расчеты на прочность стержней и других элементов конструкций составляют одну из основных задач сопротивления материалов. Целью этих расчетов является обеспечение надежной и безопасной работы элементов конструкций и сооружений в течение всего периода эксплуатации при минимальном расходе материала.

Расчеты на прочность производятся на основе определенных методов, позволяющих сформулировать условия прочности элементов конструкций при различных воздействиях.

Основным методом расчета на прочность элементов строительных конструкций является метод предельных состояний. В этом методе значения всех нагрузок, действующих на конструкцию в течение всего периода ее эксплуатации, разделяются на нормативные и расчетные. Нормативные значения нагрузок характеризуют их действие на конструкцию при нормальных условиях ее эксплуатации. Это собственный вес конструкции, атмосферные воздействия снега, ветра, вес технологического оборудования, людей и т.п. Нормативные значения нагрузок приведены в строительных нормах и правилах (СНиП).

Расчетные значения нагрузок Рр определяются путем умножения нормативных значений Рн на коэффициенты надежности по нагрузке уу-:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

С помощью коэффициентов производится учет возможного отклонения нагрузок от их нормативных значений в неблагоприятную для работы конструкции сторону. Значения коэффициентов надежности по нагрузке устанавливаются нормами проектирования с учетом различных факторов в пределах от 1,05 до 1,4.

В качестве основного параметра, характеризующего сопротивление материала конструкции различным воздействиям, принимается нормативное сопротивление RH, соответствующее значению предела текучести для пластичных материалов или временного сопротивления для хрупких материалов. Последние определяются с помощью механических испытаний.

При оценке прочности элементов конструкций величина нормативного сопротивления материала должна быть уменьшена за счет различных неблагоприятных факторов (например, ухудшения качества материала). Для этого вводится расчетное сопротивление, которое определяется по формуле

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

где ут — коэффициент надежности по материалу, изменяющийся в различных пределах в зависимости от физико-механических свойств материала. Например, для стали он изменяется в пределах от 1,025 до 1,15.

Кроме того, в условие прочности вводится коэффициент условий работы ус, с помощью которого учитываются конструктивные особенности и виды нагружения сооружений. Коэффициент ус может быть больше или меньше единицы.

Величины нормативных и расчетных сопротивлений и значения коэффициентов ур ут и ус приведены в соответствующих разделах строительных норм и правил (СНиП).

Условие прочности стержня при растяжении и сжатии, согласно методу предельных состояний, имеет следующий вид:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

где N — продольная сила в стержне, вычисленная от действия расчетных нагрузок; F — площадь поперечного сечения стержня.

Условие (3.27) обычно ставится для сечения стержня, в котором действуют наибольшие нормальные напряжения.

С помощью условия прочности (3.27) можно выполнить подбор сечения стержня, т.е. определить размеры поперечного сечения или установить номер прокатного профиля по сортаменту, а также определить грузоподъемность стержня или стержневой системы. Подбор сечения стержня выполняется по формуле

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

При расчете на прочность элементов машиностроительных конструкций используется метод расчета по допускаемым напряжениям. В этом методе внутренние усилия и напряжения в элементах конструкции вычисляются от действия нормативных нагрузок, допускаемых при нормальной эксплуатации данной конструкции. Сопротивление материала различным воздействиям характеризуется допускаемым напряжением [а], которое определяется по формулам: для хрупких материалов

Читайте также:  Можно ли греть ногу при растяжении мышц

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

для пластичных материалов

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

где пви пт — коэффициенты запаса прочности по отношению к временному сопротивлению ов и пределу текучести от.

Коэффициенты запаса принимаются с учетом целого ряда факторов, таких как физико-механические свойства материала, условия работы конструкции, характер действия нагрузок и т.п.

Величины допускаемых напряжений [о] для различных материалов приведены в соответствующих нормативных документах.

Условие прочности стержня при растяжении и сжатии по методу допускаемых напряжений имеет следующий вид:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

С помощью условия (3.31) можно также решать задачи подбора сечения стержня и определения грузоподъемности.

Пример 3.9. Жесткая балка АВ нагружена сосредоточенной силой и поддерживается с помощью стержня CD (рис. 3.24). Подберем сечение стержня в виде двух стальных прокатных равнобоких уголков и в виде двух стальных тяг круглого сечения. В расчетах примем нормативное значение силы Рн = 100 кН, yf= 1,4, ус = 1,0, R = 210 МПа = 21 кН/см2.

Определим расчетное значение силы:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Определим с помощью уравнения равновесия расчетное значение продольной силы в стержне CD:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Вычислим значение требуемой по условию прочности площади поперечного сечения стержня:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

В первом варианте принимаем по сортаменту сечение стержня в виде двух равнобоких уголков (рис. 3.25, а) _|1_56х56х5. Площадь поперечного сечения стержня равна F= 2 • 5,41 = 10,82 см2.

Во втором варианте определяем требуемый диаметр сечения каждого стержня (рис. 3.25, б):

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Рис. 3.24

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Рис. 3.25

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Округлив в большую сторону, примем D = 2,6 см.

Определим для первого варианта сечения значения напряжений в поперечном сечении стержня:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Прочность стержня обеспечена с небольшим запасом.

Пример 3.10. Стержневая система состоит из жесткой балки АВ, имеющей шарнирно-неподвижную опору С, и двух стержней BD и АЕ, поддерживающих балку (рис. 3.26). К балке приложена сила Р, нормативное значение которой равно 300 кН. Определим усилия в стержнях и подберем их сечения в виде двух стальных прокатных равнобоких уголков. В расчетах примем соотношение между площадями поперечных сечений стержней F2/F] = 1,3, yf = 1,2, ус = 1,0, R = 210 МПа = 21 кН/см2.

Расчетное значение силы Р равно Рр = 300 • 1,2 = 360 кН.

Данная стержневая система является статически неопределимой, поскольку для определения четырех неизвестных величин /V,, N2, Rcи Нсможно составить только три независимых уравнения статики. Используем уравнение равновесия относительно усилий в стержнях /V, и N2. Учитывая, что г, = 3 sin 30° = 1,5 м, получим

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Для получения дополнительного уравнения относительно N{ и N2 рассмотрим схему деформации системы. При повороте жесткой балки АВ на малый угол у (рис. 3.27) удлинения стержней составят:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системыРасчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Рис. 3.26

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Рис. 3.27

Определим из подобия треугольников АА’С и В В’ С соотношение между величинами А/, и Д/2:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Выражаем величины удлинений стержней через действующие в них усилия и составляем дополнительное уравнение относительно N, и N2:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

где /j = 3/cos 30° = 3,46 ми /2 = 1,5 м — длины стержней.

Подставляем соотношение между усилиями в уравнение равновесия и определяем величины усилий в стержнях:
Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Определяем требуемые по условию прочности площади поперечных сечений стержней:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Проверим выполнение принятого в начале расчета соотношения между площадями F{ и F2:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Поскольку принятое соотношение не выполняется, при подборе сечений стержней надо увеличить требуемую площадь поперечного сечения первого стержня и принять ее равной

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Принимаем по сортаменту сечения стержней в виде двух стальных прокатных равнобоких уголков, определяем действующие в стержнях напряжения и проверяем их прочность. Стержень BD (2|_75х75х8)

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системыРасчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Стержень (2L 110x110x7)
Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Прочность стержней обеспечена.

Пример 3.11. Для данной системы (рис. 3.28) определим величину допустимой силы Р из условий прочности стержней Л В и ВС. Определим усилия и напряжения в стержнях. В расчетах примем R = 220 МПа = 22 кН/см2 иус = 0,9.

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Рис. 3.28

Составим уравнения равновесия:


Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Определим площади поперечных сечений стержней и выразим действующие в них напряжения через силу Р:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Напряжения в стержне АВ являются большими по величине. Определим из условия прочности этого стержня величину силы Р:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Примем Р = 245 кН и вычислим значения усилий и напряжений в стержнях:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Прочность стержней обеспечена.

Пример 3.12. Для латунного стержня ступенчато-постоянного сечения (рис. 3.29, а) определим величину силы .Риз условия прочности стержня. Определим напряжения в пределах каждого участка стержня. В расчетах используем метод допускаемых напряжений, приняв [о] = 80 МПа = 8 кН/см2.

Площади поперечных сечений стержня равны:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Строим эпюру продольных сил (рис. 3.29, б). Определяем нормальные напряжения в пределах участков стержня и выражаем их через силу Р.

Первый участок

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Второй участок

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системыРасчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Рис. 3.29

Эпюра о приведена на рис. 3.29, в. Ставим условие прочности по напряжениям на первом участке и определяем величину Р:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Примем Р = 40 кН и определим усилия и напряжения в стержне:

Расчеты на прочность и жесткость при растяжении и сжатии стержневой системы

Источник